Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grzymala-Busse, J. W." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
A new algorithm for generation of decision trees
Autorzy:
Grzymała-Busse, J. W.
Hippe, Z. S.
Knap, M.
Mroczek, T.
Powiązania:
https://bibliotekanauki.pl/articles/1965778.pdf
Data publikacji:
2004
Wydawca:
Politechnika Gdańska
Tematy:
artificial intelligence
supervised machine learning
decision trees
Bayes networks
Opis:
A new algorithm for development of quasi-optimal decision trees, based on the Bayes theorem, has been created and tested. The algorithm generates a decision tree on the basis of Bayesian belief networks, created prior to the formation of the decision tree. The efficiency of this new algorithm was compared with three other known algorithms used to develop decision trees. The data set used for the experiments was a set of cases of skin lesions, histopatolgically verified.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2004, 8, 2; 243-247
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An improved comparison of three rough set approaches to missing attribute values
Autorzy:
Grzymala-Busse, J. W.
Grzymala-Busse, W. J.
Hippe, Z. S.
Rząsa, W.
Powiązania:
https://bibliotekanauki.pl/articles/969797.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
incomplete data sets
missing attribute values
approximations for incomplete data
LERS data mining system
MLEM2 algorithm
Opis:
In a previous paper three types of missing attribute values: lost values, attribute-concept values and "do not care" conditions were compared using six data sets. Since previous experimental results were affected by large variances due to conducting experiments on different versions of a given data set, we conducted new experiments, using the same pattern of missing attribute values for all three types of missing attribute values and for both certain and possible rules. Additionally, in our new experiments, the process of incremental replacing specified values by missing attribute values was terminated when entire rows of the data sets were full of missing attribute values. Finally, we created new, incomplete data sets by replacing the specified values starting from 5% of all attribute values, instead of 10% as in the previous experiments, with an increment of 5% instead of the previous increment of 10%. As a result, it is becoming more clear that the best approach to missing attribute values is based on lost values, with small difference between certain and possible rules, and that the worst approach is based on "do not care" conditions, certain rules. With our improved experimental setup it is also more clear that for a given data set the type of the missing attribute values should be selected individually.
Źródło:
Control and Cybernetics; 2010, 39, 2; 469-486
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnosing skin melanoma: current versus future directions
Autorzy:
Hippe, Z. S.
Bajcar, S.
Blajdo, P.
Grzymała-Busse, J. P.
Grzymała-Busse, J. W.
Knap, M.
Paja, W.
Wrzesień, M.
Powiązania:
https://bibliotekanauki.pl/articles/1954638.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
melanoma
TDS
machine learning in diagnosis
Opis:
A new database containing 410 cases of nevi pigmentosi, in four categories: benign nevus, blue nevus, suspicious nevus and melanoma malignant, carefully verified by histopathology, is described. The database is entirely different from the base presented previously, and can be readily used for research based on the so-called constructive induction in machine learning. To achieve this, the database features a different set of thirteen descriptive attributes, with a fourteenth additional attribute computed by applying values of the remaining thirteen attributes. In addition, a new program environment for the validation of computer-assisted diagnosis of melanoma, is briefly discussed. Finally, results are presented on determining optimal coefficients for the well-known ABCD formula, useful for melanoma diagnosis.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 2; 289-293
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies