Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Demirci, Mustafa" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Daily Suspended Sediment Prediction Using Seasonal Time Series and Artificial Intelligence Techniques
Autorzy:
Üneş, Fatih
Taşar, Bestami
Demirci, Mustafa
Zelenakova, Martina
Kaya, Yunus Ziya
Varçin, Hakan
Powiązania:
https://bibliotekanauki.pl/articles/2069941.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
prediction
neuro-fuzzy
sediment rating curve
support vector machine
suspended sediment
Opis:
Estimating the amount of suspended sediment in rivers correctly is important due to the adverse impacts encountered during the design and maintenance of hydraulic structures such as dams, regulators, water channels and bridges. The sediment concentration and discharge currents have usually complex relationship, especially on long term scales, which can lead to high uncertainties in load estimates for certain components. In this paper, with several data-driven methods, including two types of perceptron support vector machines with radial basis function kernel (SVM-RBF), and poly kernel learning algorithms (SVM-PK), Library SVM (LibSVM), adaptive neuro-fuzzy (NF) and statistical approaches such as sediment rating curves (SRC), multi linear regression (MLR) are used for forecasting daily suspended sediment concentration from daily temperature of water and streamflow in the river. Daily data are measured at Augusta station by the US Geological Survey. 15 different input combinations (1 to 15) were used for SVM-PK, SVM-RBF, LibSVM, NF and MLR model studies. All approaches are compared to each other according to three statistical criteria; mean absolute errors (MAE), root mean square errors (RMSE) and correlation coefficient (R). Of the applied linear and nonlinear methods, LibSVM and NF have good results, but LibSVM generates a slightly better fit under whole daily sediment values.
Źródło:
Rocznik Ochrona Środowiska; 2021, 23; 117--137
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies