Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dahlem, P." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Enhancing laser step diagonal measurement by multiple sensors for fast machine tool calibration
Autorzy:
Dahlem, P.
Montavon, B.
Peterek, M.
Schmitt, R. H.
Powiązania:
https://bibliotekanauki.pl/articles/99640.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machine tool calibration
step diagonal measurement
integrated calibration system
Opis:
The volumetric performance of machine tools is limited by the remaining relative deviation between desired and real tool tip position. Being able to predict this deviation at any given functional point enables methods for compensation or counteraction and hence reduce errors in manufacturing and uncertainties for on-machine measurement tasks. Time-efficient identification and quanitification of different contributions to the resulting deviation play a key role in this strategy. The authors pursue the development of an optical sensor system for step diagonal measurement methods, which can be integrated into the working volume of the machine due to its compact size, enabling fast measurements of the axes’ motion error including roll, pitch and yaw and squareness errors without significantly interrupting the manufacturing process. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allow for measurements at comparable accuracy, lower cost and smaller dimensions compared to state-of-the-art optical measuring appliances for offline machine tool calibration. For validation of the method a virtual machine setup and raytracing simulation is used which enables the investigation of systematic errors like sensor hardware misalignment.
Źródło:
Journal of Machine Engineering; 2018, 18, 2; 64-73
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A review on enabling technologies for resilient and traceable on-machine measurements
Autorzy:
Dahlem, Philipp
Emonts, Dominik
Sanders, Mark P.
Schmitt, Robert H.
Powiązania:
https://bibliotekanauki.pl/articles/100047.pdf
Data publikacji:
2020
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
on-machine measurement
thermal modelling
production metrology
Opis:
On-Machine Measurements are a key factor for shorter closed quality control loops in industrial manufacturing. Especially for the production of large components, they promote the first-time-right approach, which is highly desirable, due to small quantities and steep value chains. In contrast to measurement rooms for CMMs, the production environment conditions are unregulated and impact multiple factors along the on-machine measurement metrological chain. As presented as a keynote speech at the XXXI CIRP Sponsored Conference on Supervising and Diagnostics of Machining Systems “MANUFACTURING ACTIVE IMPROVEMEN” by Professor Dr. Robert H. Schmitt, this article reviews current research and ideas regarding on-machine measurements. The authors collect necessary process data with the help of new technologies in the course of digitalization and thus propose a holistic model for systematic error compensation and measurement uncertainty prediction. For assessing the machine’s volumetric accuracy under thermal loads, the authors develop a novel modelling approach, which determines transient geometric errors by abstracting structural parts as spline curve with typical deformation modes. To address the workpiece’s influence on the measurement process, a data-driven framework, fusing real-time sensor-data with the virtual component, is used to model and predict transient thermo-mechanical workpiece states. For dissemination, the authors continue working on ISO standardization and, as subjects of future research, explore new paths in terms of data-driven modelling approaches, using physical abstractions coupled with machine learning and live process data.
Źródło:
Journal of Machine Engineering; 2020, 20, 2; 5-17
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies