Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ali, Yousaf" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Mode-route choice decisions: a case study of CPEC investment in Pakistan railways
Autorzy:
Ali, Yousaf
Sabir, Muhammad
Powiązania:
https://bibliotekanauki.pl/articles/2173449.pdf
Data publikacji:
2022
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
AHP-TOPSIS
hybrid-CDM
route-mode choice
wybór trybu pracy
Opis:
. This study proposes the use of multi-criteria decision models (MCDM) for transportation mode-route choice decisions. This method is beneficial when trips' microdata are unavailable. Route-mode choice decisions were investigated for three public transportation modes (buses, railways, and airlines) in the post-China Pakistan Economic Corridor (CPEC) investment in Pakistan Railways (PR) for a link between Peshawar and Karachi. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) was used for the mode choice decisions and a hybrid model of AHP (Analytical Hierarchy Approach) – TOPSIS was used for the route choice decision ML-1 link of PR. This study concludes that rails were the best mode of transportation in post-CPEC investment. Furthermore, route 3, linking Karachi to Peshawar via Lodhran, Multan, and Miniawali, is the best route connection among the four considered routes.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2022, 115; 5--21
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep Neural Network for Supervised Single-Channel Speech Enhancement
Autorzy:
Saleem, Nasir
Irfan Khattak, Muhammad
Ali, Muhammad Yousaf
Shafi, Muhammad
Powiązania:
https://bibliotekanauki.pl/articles/177497.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
deep neural network
intelligibility
speech enhancement
speech quality
supervised learning
Wiener filtering
Opis:
Speech enhancement is fundamental for various real time speech applications and it is a challenging task in the case of a single channel because practically only one data channel is available. We have proposed a supervised single channel speech enhancement algorithm in this paper based on a deep neural network (DNN) and less aggressive Wiener filtering as additional DNN layer. During the training stage the network learns and predicts the magnitude spectrums of the clean and noise signals from input noisy speech acoustic features. Relative spectral transform-perceptual linear prediction (RASTA-PLP) is used in the proposed method to extract the acoustic features at the frame level. Autoregressive moving average (ARMA) filter is applied to smooth the temporal curves of extracted features. The trained network predicts the coefficients to construct a ratio mask based on mean square error (MSE) objective cost function. The less aggressive Wiener filter is placed as an additional layer on the top of a DNN to produce an enhanced magnitude spectrum. Finally, the noisy speech phase is used to reconstruct the enhanced speech. The experimental results demonstrate that the proposed DNN framework with less aggressive Wiener filtering outperforms the competing speech enhancement methods in terms of the speech quality and intelligibility.
Źródło:
Archives of Acoustics; 2019, 44, 1; 3-12
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Observer design estimating the propofol concentration in PKPD model with feedback control of anesthesia administration
Autorzy:
Ilyas, Muhammad
Khan, Awais
Khan, Muhammad Abbas
Xie, Wei
Riaz, Raja Ali
Khan, Yousaf
Powiązania:
https://bibliotekanauki.pl/articles/2106507.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pharmacokinetic models
pharmacodynamic model
bispectral index monitor
observer design
sliding mode control
Opis:
Propofol infusion in anesthesia administration requires continual adjustment in the manual infusion system to regulate the hypnosis level. Hypnotic level is based on Bispectral Index Monitor (BIS) showing the cortical activity of the brain scaled between 0 to 100. The new challenging aspect of automation in anaesthesia is to estimate the concentration of hypnotic drugs in different compartments of the body including primary, rapid peripheral (muscle), slow peripheral (bones, fat) and effect site (brain) compartment based on Pharmacokinetics (PK) and Pharmacodynamics (PD) model. This paper aimed to regulate the hypnosis level with estimating the Propofol concentrations using a linear observer in feedback control strategy based on Integral Super-Twisting Sliding Mode Controller (ISTSMC). The drug concentration in plasma of the silico patients accurately estimated in nominal transient. The results show that tracking errors between the actual output in form of BIS level and linearized output nearly approaches to zero in the maintenance phase of anesthesia to ensure the controller response on sliding phase with optimum performances by achieving desired hypnotic level 50 on BIS. The robustness of control strategy is further ensured by adding measurement noise of electromagnetic environment of operation theatre distracting signal quality index of the output BIS level.
Źródło:
Archives of Control Sciences; 2022, 32, 1; 85--103
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies