Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "East European Craton" wg kryterium: Wszystkie pola


Tytuł:
Ordovician–Silurian lithostratigraphy of the East European Craton in Poland
Autorzy:
Porębski, Szczepan
Podhalańska, Teresa
Powiązania:
https://bibliotekanauki.pl/articles/191874.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
lithostratigraphy
Ordovician
Silurianast European Craton
Opis:
This paper deals with the lithostratigraphic correlation of the Ordovician-Silurian succession between the Baltic, Podlasie and Lublin basins, located on the SW slope of the East European Craton. The correlation is based on previous lithostratigraphic classifications, which are modified here to include the results of recent biostratigraphic and sedimentological work performed on several new wells. The authors propose to extend the Sasino Formation for the entire upper Darriwilian-lower Katian mudstone sheet that is traceable in all basins. It is recommended that the Jantar Bituminous Claystone Member (late Hirnantian-Aeronian) of the Pasłęk Formation be elevated to the rank of formation and the name Pasłęk Mudstone Formation be retained for the late Aeronian-Telychian, rhythmic alternations of black, laminated mudstones and greenish, bioturbated mudstones. Moreover, the authors suggest that the top of the Kociewie Formation (Sheinwoodian-Ludfordian) be placed at the upper boundary of the Reda Member (latest Ludfordian), which shows much wider lateral persistence than previously was thought.
Źródło:
Annales Societatis Geologorum Poloniae; 2019, 89, 2; 95-104
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preface : Unconventional hydrocarbon accumulations in the East European Craton in Poland
Autorzy:
Golonka, Jan
Porębski, Szczepan J.
Bębenek, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/191579.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
East European Craton
EEC
hydrocarbon accumulations
Opis:
This collection of eight papers is a follow-up to the series of articles that appeared in Issue 2 of ASGP Volume 89 (see also Golonka and Bębenek, 2017). [...]
Źródło:
Annales Societatis Geologorum Poloniae; 2019, 89, 4; 343- 346
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The stratigraphy of Zechstein strata in the East European Craton of Poland : an overview
Autorzy:
Peryt, Tadeusz Marek
Skowroński, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/2060632.pdf
Data publikacji:
2021
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Zechstein
stratigraphy
palaeogeography
East European Craton
Main Dolomite
Platy Dolomite
Polska
Opis:
The sedimentary and stratigraphic patterns established for Zechstein of the western part of the Peribaltic Syneclise (and in particular the eastern Łeba Elevation) were applied to other parts of the East European Craton (EEC) in Poland: the eastern Peribaltic Syneclise and the Podlasie region. A very large number of mostly fully-cored borehole sections in the Puck Bay region certainly predestines the eastern Łeba Elevation area to use it as a model. The most part of the EEC, except of its part adjacent to the Teisseyre-Tornquist Zone, during the Zechstein deposition represents the marginal parts of the basin. The fauna occurring in the Zechstein carbonate deposits of the EEC makes it possible to distinguish between the Zechstein Limestone and the younger carbonate strata, but certainly not between the Main Dolomite and the Platy Dolomite and hence the facies models for the Zechstein that have been previously developed in the western part of the Peribaltic Syneclise augmented by sequence stratigraphic approach seem to be the best tool to apply in other peripheral areas in the EEC area. The Zechstein sequence in the western part of the Peribaltic Syneclise consists, in general terms, of three parts: (1) carbonate platform of the Zechstein Limestone (occurring only in the north-westernmost corner of the study area and passing into basin facies dominant in the most part of the area); (2) the PZ1 evaporite platform system composed of sulphate platforms and adjacent basin system and constituting the major part of the Zechstein sequence; and (3) the Upper Anhydrite-PZ3 cover. There is a consensus, as far as the western part of the Peribaltic Syneclise is concerned, that the Platy Dolomite platform is wider than the Main Dolomite platform. In the easternmost part of the Peribaltic Syneclise, the stratigraphical interpretations are diverse. We have included the anhydrite overlying the Zechstein Limestone into the Upper Anhydrite, and concluded that the overlying interbedded mudstone and anhydrite also belong to the Upper Anhydrite. When above the Upper Anhydrite one carbonate unit occurs, it is assigned either to the Main Dolomite and Platy Dolomite, or to the Platy Dolomite. The same conclusion is proposed for the marginal parts of the Podlasie Bay. The deposition of Zechstein Limestone resulted in the origin of carbonate platforms along the basin margins which changed an inherited topographic setting. The Lower Anhydrite deposits are lowstand systems tracts (LST) deposits, lacking in more marginal parts of the western and eastern Peribaltic Syneclise and in the major part of the Podlasie Bay. The accommodation space existed and/or created during the Lower Anhydrite and the Oldest Halite deposition in the Baltic and Podlasie bays was filled and at the onset of the Upper Anhydrite deposition, a roughly planar surface existed except in the area ad jacent to the main Polish basin. The Upper Anhydrite deposits are transgressive systems tracts deposits and then highstand systems tracts deposits and they encroached the Zechstein Limestone platforms. The Upper Anhydrite deposition was terminated by sea level fall, and the Upper Anhydrite deposits in the marginal areas became subject to karstification. The Main Dolomite transgression took place in several phases but its maximum limit did not reach the Upper Anhydrite limit. The deposition of the PZ2 chlorides (LST deposits) resulted in the filling of the accommodation space that was inherited after the deposition of the Main Dolomite and the Basal Anhydrite. Subsequently, the area became exposed, and marine deposits (Grey Pelite and Platy Dolomite) related to the last major transgression during the life of the Zechstein basin that resulted in a flooding of the exposed surface of older Zechstein deposits, including the area that was emergent during deposition of the PZ2 cycle. Microbial carbonates, being stromatolites and thrombolites, are a common feature of all Zechstein carbonate units but in particular this is the case of the Platy Dolomite. There are no direct premises allowing for convincing settlement doubts regarding the stratigraphical position of the upper carbonate unit in many cases, but several lines of evidence suggest that, as in the entire Zechstein basin, the Main Dolomite considerably shifted basinward, and the Platy Dolomite - landward, although it is difficult to ascertain whether the original Platy Dolomite extent was similar to or greater than the limit of the Zechstein Limestone as elsewhere in the Zechstein Basin.
Źródło:
Geological Quarterly; 2021, 65, 4; 21--27
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The stratigraphy of Zechstein strata in the East European Craton of Poland : an overview
Autorzy:
Peryt, Tadeusz Marek
Skowroński, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/2055871.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
Zechstein
stratigraphy
palaeogeography
East European Craton
Main Dolomite
Platy Dolomite
Polska
Opis:
The sedimentary and stratigraphic patterns established for Zechstein of the western part of the Peribaltic Syneclise (and in particular the eastern Łeba Elevation) were applied to other parts of the East European Craton (EEC) in Poland: the eastern Baltic Syneclise and the Podlasie region. A very large number of mostly fully-cored borehole sections in the Puck Bay region certainly predestines the eastern Łeba Elevation area to use it as a model. The most part of the EEC, except of its part adjacent to the Teisseyre-Tornquist Zone, during the Zechstein deposition represents the marginal parts of the basin. The fauna occurring in the Zechstein carbonate deposits of the EEC makes it possible to distinguish between the Zechstein Limestone and the younger carbonate strata, but certainly not between the Main Dolomite and the Platy Dolomite and hence the facies models for the Zechstein that have been previously developed in the western part of the Peribaltic Syneclise augmented by sequence stratigraphic approach seem to be the best tool to apply in other peripheral areas in the EEC area. The Zechstein sequence in the western part of the Peribaltic Syneclise consists, in general terms, of three parts: (1) carbonate platform of the Zechstein Limestone (occurring only in the north-westernmost corner of the study area and passing into basin facies dominant in the most part of the area); (2) the PZ1 evaporite platform system composed of sulphate platforms and adjacent basin system and constituting the major part of the Zechstein sequence; and (3) the Upper Anhydrite-PZ3 cover. There is a consensus, as far as the western part of the Peribaltic Syneclise is concerned, that the Platy Dolomite platform is wider than the Main Dolomite platform. In the easternmost part of the Peribaltic Syneclise, the stratigraphical interpretations are diverse. We have included the anhydrite overlying the Zechstein Limestone into the Upper Anhydrite, and concluded that the overlying interbedded mudstone and anhydrite also belong to the Upper Anhydrite. When above the Upper Anhydrite one carbonate unit occurs, it is assigned either to the Main Dolomite and Platy Dolomite, or to the Platy Dolomite. The same conclusion is proposed for the marginal parts of the Podlasie Bay. The deposition of Zechstein Limestone resulted in the origin of carbonate platforms along the basin margins which changed an inherited topographic setting. The Lower Anhydrite deposits are lowstand systems tracts (LST) deposits, lacking in more marginal parts of the western and eastern Peribaltic Syneclise and in the major part of the Podlasie Bay. The accommodation space existed and/or created during the Lower Anhydrite and the Oldest Halite deposition in the Baltic and Podlasie bays was filled and at the onset of the Upper Anhydrite deposition, a roughly planar surface existed except in the area adjacent to the main Polish basin. The Upper Anhydrite deposits are transgressive systems tracts deposits and then highstand systems tracts deposits and they encroached the Zechstein Limestone platforms. The Upper Anhydrite deposition was terminated by sea level fall, and the Upper Anhydrite deposits in the marginal areas became subject to karstification. The Main Dolomite transgression took place in several phases but its maximum limit did not reach the Upper Anhydrite limit. The deposition of the PZ2 chlorides (LST deposits) resulted in the filling of the accommodation space that was inherited after the deposition of the Main Dolomite and the Basal Anhydrite. Subsequently, the area became exposed, and marine deposits (Grey Pelite and Platy Dolomite) related to the last major transgression during the life of the Zechstein basin that resulted in a flooding of the exposed surface of older Zechstein deposits, including the area that was emergent during deposition of the PZ2 cycle. Microbial carbonates, being stromatolites and thrombolites, are a common feature of all Zechstein carbonate units but in particular this is the case of the Platy Dolomite. There are no direct premises allowing for convincing settlement doubts regarding the stratigraphical position of the upper carbonate unit in many cases, but several lines of evidence suggest that, as in the entire Zechstein basin, the Main Dolomite considerably shifted basinward, and the Platy Dolomite – landward, although it is difficult to ascertain whether the original Platy Dolomite extent was similar to or greater than the limit of the Zechstein Limestone as elsewhere in the Zechstein Basin.
Źródło:
Annales Societatis Geologorum Poloniae; 2021, 91, 4
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neoproterozoic flood basalts of the upper beds of the Volhynian Series (East European Craton)
Autorzy:
Białowolska, A.
Bakun-Czubarow, N.
Fedoryshyn, Y.
Powiązania:
https://bibliotekanauki.pl/articles/2059908.pdf
Data publikacji:
2002
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Volhynian Series
Ratno Beds
flood basalts
fractional crystallisation
liquation
palagonite
copper mineralisation
Opis:
The effusive rocks of the Ratno Beds of the Volhynian Series known from the western slope of the Ukrainian Shield are represented by lower Vendian flood basalts whose normative composition is that of quartz tholeiites. These are plagioclase-pyroxene basalts displaying intergranular, intersertal, doleritic, ophitic and amygdaloidal textures; they range from aphanitic to medium-grained and contain about 7 vol. % of palagonite - an altered glass with a high iron and considerable magnesium content. The range in composition of plagioclases (andesine-bytownite) and clinopyroxenes (augite-ferropigeonite) suggests that the Ratno Beds basalts formed by fractional crystallisation of a parent magma. Residual magma underwent liquation, producing a separate acid glass (69-73 wt. % of SiO2) phase within a basic one considerably poorer in SiO2 but rich in iron and magnesium. The Ratno Beds basalts are relatively rich in silica, iron, titanium and vanadium as well as in REE and LREE in particular but poor in Ni, Co and Cr. Normative composition, geochemical characteristics and tectonic position suggest classification as continental quartz tholeiites. Hydrothermal solutions are responsible for rich native copper mineralisation in basalts of certain parts of Volhynia (Ivance and Policy). The Vendian volcanism of the Volhynian Series lithologically correlated with the Sławatycze Series of eastern Poland, can be related to continental rifting accompanying the breakup of Rodinia, with crustal fractures mainly running concordantly with the suture zone between Fennoscandia and Sarmatia, thus almost perpendicular to the Tornquist rift; other fracture trends may also have controlled Vendian volcanism.
Źródło:
Geological Quarterly; 2002, 46, 1; 37-58
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zachodni i południowy zasięg kratonu wschodnioeuropejskiego
Western and southern extent of the East European Craton
Autorzy:
Mizerski, W.
Stupka, O.
Powiązania:
https://bibliotekanauki.pl/articles/2074377.pdf
Data publikacji:
2005
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
platforma wschodnioeuropejska
platforma scytyjska
geotektonika
Ukraina
East European Platform
geotectonics
Scythean Platform
Polska
Ukraine
Opis:
The problem of the western and southern borders of the East European Platform is still subject to debate; different authors variously put this border on the geological maps of Europe. The deepness of the crystalline basement between the T–T zone and the Variscan orogen and within the so-called Scythian Platform makes recognizing the geotectonic structure of the area difficult. There are relatively few and small regions with rocks older than Mesozoic. There is no direct access to Precambrian strata over most of the area. Most structural information is provided by geophysical methods, but they do not allow to date the age of consolidated basement. The paleomagnetic studies of the area give equivocal results. Our analysis of available materials from between the T–T zone and the Variscan orogen and the Scythian Platform suggests that the Precambrian Platform has a larger extent than it was generally assumed. The platform extends westwards even as far as the front of the Variscan orogen, and to the SWand S it may reach the Alpine folded structures.
Źródło:
Przegląd Geologiczny; 2005, 53, 11; 1030-1039
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Palaeozoic palaeogeography of the East European Craton (Poland) in the framework of global plate tectonics
Autorzy:
Golonka, Jan
Porębski, Szczepan J.
Barmuta, Jan
Papiernik, Jan
Bębenek, Sławomir
Barmuta, Maria
Botor, Mariusz
Pietsch, Kaja
Słomka, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/191864.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
Palaeozoic
Baltica
Avalonia
Gondwana
Laurussia
plate tectonics
Opis:
Global palaeogeographic maps were constructed for eight time intervals in the Palaeozoic. The maps contain information concerning plate tectonics and palaeoenvironment during the Cambrian, Ordovician, Silurian, Devonian and Carboniferous. The East European Craton belonged to the Palaeozoic Baltica Plate, which originated as a result of disintegration of the supercontinent Pannotia during the early Cambrian. Baltica included part of Poland and adjacent areas northeast of a line that extends between Scania and the Black Sea. This plate was located in the Southern Hemisphere and drifted northward during Early Palaeozoic time. The Early Ordovician was the time of maximum dispersion of continents during the Palaeozoic. Avalonia probably started to drift away from Gondwana and moved towards Baltica during Ordovician time. Between Gondwana, Baltica, Avalonia and Laurentia, a large longitudinal oceanic unit, known as the Rheic Ocean, was formed. Avalonia was probably sutured to Baltica by the end of the Ordovician or in the Early Silurian. This process was dominated by the strike-slip suturing of the two continents, rather than a full-scale continent-continent collision. Silurian was a time of Caledonian orogeny, closing of the Early Palaeozoic oceans, collision of Baltica with Avalonia and Laurentia and the assembly of the supercontinent Laurussia. The Variscan orogeny in Poland was caused by the collision of the Bohemian Massif plates and the Protocarpathian terrane with Laurussia. The Protocarpathian terrane acted as an indentor that caused thrust tectonics in the East European Platform, Holy Cross Mountains and the Lublin area.
Źródło:
Annales Societatis Geologorum Poloniae; 2019, 89, 4; 381-403
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Łysogóry Unit (Central Poland) versus East European Craton - application of sedimentological data from Cambrian siliciclastic association
Autorzy:
Jaworowski, K.
Sikorska, M.
Powiązania:
https://bibliotekanauki.pl/articles/2058939.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Central Poland
East European Craton
Cambrian
passive margin
siliciclastic association
Caledonian deformations
Opis:
TheMiddle and Late Cambrian deposits of the Łysogóry Unit and the Early and Middle Cambrian deposits of the East European Craton form part of an extensive siliciclastic sedimentary prism that was deposited on a tide and storm influenced continental shelf. In SE Poland, the proximal part of the Cambrian passive margin sedimentary prism of the East European Craton (Baltica) corresponds to the Łysogóry Unit whereas the NE part of the Małopolska Massif is thought to represent its distal part. Based on sedimentological criteria, the Cambrian siliciclastic association appears to indicate that the Łysogóry Unit and Małopolska Massif were not detached from Baltica during the breakup of the Precambrian Rodinia supercontinent, thus casting serious doubt on the exotic terrane nature of the Holy Cross Mts. Neither the Łysogóry Unit nor the Małopolska Massif are terranes in so far as they were not subject to lateral translations along the margin of Baltica. The Cambrian phases of Caledonian deformations in the Holy Cross Mts. may be explained in terms of rotational block movements controlled by large-scale listric normal faults dipping off the craton.
Źródło:
Geological Quarterly; 2006, 50, 1; 77-88
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lithospheric structure of the western part of the East European Craton investigated by deep seismic profiles
Autorzy:
Grad, M.
Janik, T.
Guterch, A.
Środa, P.
Czuba, W.
Powiązania:
https://bibliotekanauki.pl/articles/2058944.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
East European Craton
crustal structure
mantle reflectors
deep seismic refraction
seismic ray tracing
Opis:
The Palaeoproterozoic collision of Archaean Fennoscandia, Volgo-Uralia and Sarmatia, viewed as a large composite of terranes, each with an independent history during Archaean and Early Proterozoic time, formed the East European Craton. This paper summarizes the results of deep seismic sounding investigations of the lithospheric structure of the southwestern part of the East European Craton. On the basis of the modern EUROBRIDGE’94–97, POLONAISE’97 and CELEBRATION 2000 projects, as well as of data from the Coast Profile and from reinterpreted profiles VIII and XXIV, the main tectonic units of Fennoscandia and Sarmatia are characterized. The crustal thickness in the whole area investigated is relatively uniform, being between 40 and 50 km (maximum about 55 km). For Fennoscandia, the crystalline crust of the craton can be generally divided into three parts, while in Sarmatia the transition between the middle and lower crust is smooth. For both areas, relatively high P-wave velocities ( 7.0 km/s) were observed in the lower crust. Relatively high seismic velocities of the sub-Moho mantle (~8.2–8.3 km/s) were observed along most of the profiles. The uppermost mantle reflectors often occur ca. 10 to 15 km below the Moho. Finally, we show the variability in physical properties for the major geological domains of Fennoscandia and Sarmatia, which were crossed by the network of our profiles.
Źródło:
Geological Quarterly; 2006, 50, 1; 9-22
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graptolite biostratigraphy and dating of the Ordovician–Silurian shale succession of the SW slope of the East European Cratond
Autorzy:
Podhalańska, Teresa
Powiązania:
https://bibliotekanauki.pl/articles/191870.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
biostratigraphy
Ordovician
Silurian
graptolite
East European Craton
Opis:
This paper deals with the graptolite biostratigraphy and age determination of the Ordovician and Silurian lithological successions of the Baltic, Podlasie and Lublin basins that existed during the early Palaeozoic on the SW slope of the East European Craton. The biostratigraphic research described was conducted on core material coming from old boreholes and cores from several new wells. Graptolite zones were identified and the chronostratigraphic succession was constrained, with the depths to the stratigraphic units, especially those considered prospective for petroleum, being determined in the individual borehole sections. Old local stratigraphic schemes of the Silurian used for many years in the Polish geological literature are correlated with the standard schemes. The most complete succession of graptolite zones, both in the Ordovician and the Silurian, is observed in the Baltic region. The number of stratigraphic gaps increases towards the east and southeast of the regions. The stratigraphic range of the Sasino Shale Formation decreases in this direction; in the Podlasie and Lublin regions, it comprises only the Katian Stage. The stratigraphic range of the Jantar Formation in the western part of the area spans not only the Rhuddanian but also part or the whole of the Aeronian. In the Podlasie and especially the Lublin regions, sedimentation of the Jantar Formation began in the latest Rhuddanian–Aeronian. A large stratigraphic gap, spanning part or the whole of the Llandovery and increasing eastwards, was documented in the Podlasie-Lublin region. The biostratigraphic research allowed a more precise constraint on the temporal and spatial extent of erosion of Pridoli deposits and the beginning of coarse-grained, siliciclastic sedimentation (Kociewie Formation) in the Baltic Basin.
Źródło:
Annales Societatis Geologorum Poloniae; 2019, 89, 4; 429-452
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geological setting and Ediacaran–Palaeozoic evolution of the western slope of the East European Craton and adjacent regions
Autorzy:
Poprawa, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/191938.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
Lower Palaeozoic
Ediacaran
Baltic Basin
Lublin-Podlasie Basin
geological map
geological cross-section
tectonic evolution
Opis:
A set of geological maps and geological cross-sections was prepared to document the geological setting of sedimentary basins developed on the western slope of the EEC and adjacent areas to the west. On the basis of these data and literature on the subject, the evolution of the sedimentary basins in the study area was reviewed, with special emphasis on the Ediacaran–Lower Palaeozoic basin. The basin originated during late Ediacaran rifting, related to the latest stages of breakup of the Precambrian super-continent Rodinia/Pannotia, associated with large-scale igneous activity. The rifting ultimately led to the formation of the Tornquist Ocean and subsequently, during the latest Ediacaran to Middle Ordovician, the SW margin of the newly formed Baltica became a passive continental margin. The upper Cambrian depocentre in the Biłgoraj-Narol Zone and the Łysogóry Block tentatively is interpreted as a small, narrow foredeep, related to the docking of the Małopolska Block to the western margin of Baltica. From the Late Ordovician through the Silurian, a gradual change to a collisional tectonic setting is observed across the entire SW margin of Baltica, as well as in the zones adjacent to it from the west, which together became the site of development of the extensive Caledonian foredeep basin, related to the convergence and collision of Avalonia and Baltica. The oblique character of the collision resulted in a prominent diachronism in the development of the foredeep basin. This refers to the initiation of basin subsidence, the starved basin phase, the main phase of rapid subsidence and supply of detritus from the west, and the termination of basin development. The Early Mississippian (Bretonian) phase of uplift and erosion and, to a lesser degree, also the Late Pennsylvanian one significantly affected the structure of the western EEC. During the Mississippian, extensive magmatic activity took place at the SW margin of East European Craton, in the region referred to here as the Baltic-Lublin Igneous Province.
Źródło:
Annales Societatis Geologorum Poloniae; 2019, 89, 4; 347-380
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Crustal-scale complexity of the contact zone between the Palaeozoic Platform and the East European Craton in the NWPoland
Autorzy:
Królikowski, C.
Powiązania:
https://bibliotekanauki.pl/articles/2058936.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
edge of the craton
seismic cross-sections
magnetic anomalies
geothermal field
Opis:
Hypotheses on the trace and nature of the SW margin of the East European Craton (EEC) are reviewed. As new geophysical data was acquired, the location of the EEC margin was repeatedly revised.Magnetic anomalies associated with the SWpart of the EEC and their relationship with the contact zone between the EEC and the Palaeozoic Platform are described. Based on an analysis of magnetic anomalies, seismic cross-sections, the LT-7, P1, P2 and P4 wide-angle reflection and refraction profiles, and the results of recent geothermal modeling, the geometry of the contact zone between the EEC and the Palaeozoic Platform in NW Poland has been redefined. Three important boundaries are distinguished, namely the Teisseyre-Tornquist Line marking the SW limit of the EEC at upper and middle crustal levels, the SW margin of the West Pomeranian Magnetic Anomaly that delimits the NE extension of the reversely magnetised lower crust of the Palaeozoic Platform, and the SWtermination of the high velocity lower crust of the EEC. These boundaries and their characteristics reflect the tectonic complexity of the SW margin of the EEC in its Polish sector.
Źródło:
Geological Quarterly; 2006, 50, 1; 33-42
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geological framework of the Volhyn copper fields with a review of the Volhyn Flood Basalt Province (western margin of the East-European Craton)
Autorzy:
Emetz, A.
Piestrzyński, A.
Zagnitko, V.
Powiązania:
https://bibliotekanauki.pl/articles/191595.pdf
Data publikacji:
2004
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
East-European Craton
Volhyn
Vendian
Tornquist rifting
flood basalts
Opis:
Geological structure of the Volhyn Flood Basalt Province has been described. Hydrothermally altered and partly eroded Vendian lava flows and intraflow pyroclastics occur upon an area of about 350,000 km2 in Belarus, Poland, the Ukraine, and Moldova. They host important native Cu mineralization. The Vendian volcanism developed during four volcanic phases, producing lava and pyroclastics within the Tornquist rift system along the Teisseyre-Tornquist margin. During the last two phases, the Vendian rift was tectonically parted with crust melting. The major volcanic activity occurred in the part superimposed on the deepest part of the older Late Riphean mid-Baltica rift system, which developed across the Tornquist rift. The rifting finished with opening of the Tornquist Ocean. Actually, the Palaeozoic, Mesozoic, and (or) Cainozoic beds cover the trappean volcanic plateau. The Ratne and Rafalovka-Berestovets copper fields are situated in the central part of the Lukow-Ratne swell and along western border of the Ukrainian Shield, respectively. The ore-bearing basalts were partly eroded since the Devonian until the Late Cretaceous.
Źródło:
Annales Societatis Geologorum Poloniae; 2004, 74, No 3; 257-265
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3D geological and potential field modelling of the buried alkaline-carbonatite Tajno massif (East European Craton, NE Poland)
Autorzy:
Petecki, Zdzisław
Rosowiecka, Olga
Krzemiński, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/2104773.pdf
Data publikacji:
2022
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Tajno alkaline massif
NE Poland
3D geological modelling
3D geophysical modelling
GeoModeller
Opis:
Geological and geophysical data are used to model the 3D geometry of the Tajno alkaline massif intruded during the Early Carboniferous in NE Poland. The massif consists mainly of pyroxenite, mafic intrusive and volcanic rocks, and carbonatites containing rare earth elements (REE) and other important mineral resources. The deep structure of the massif, and its thickness, shape and internal structure, has been poorly known making it impossible to properly search for useful mineral resources. In order to better constrain the distribution, geometries and relationships between the main rock types, a 3D geological model of the Tajno massif has been developed. The input data comprise a set of geological cross-sections built on an updated subsurface geological map, and borehole, magnetic and gravity data. 3D Geomodeller software was applied to integrate geological data into a coherent and geologically feasible model of the massif using geostatistical analysis. The magnetic and gravity data were used to constrain the 3D geological modelling results. The final 3D model is thus compatible with the geological data, as well as with geophysical data. The most important conclusions obtained from the modelling are as follows: (i) a higher proportion of nepheline syenites or tuffs and pyroclastic breccia in relation to pyroxenites; and, (ii) a smaller proportion of chimney breccia relative to chimney-hosted tuffs and volcanic breccia than proposed in previous geological interpretation. These results are important for further studies on the evolution of the Tajno massif and its associated carbonatites.
Źródło:
Geological Quarterly; 2022, 66, 1; art. no. 10
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The evolution of late Ediacaran riverine-estuarine system in the Lublin-Podlasie slope of the East European Craton, southeastern Poland
Autorzy:
Pacześna, J.
Powiązania:
https://bibliotekanauki.pl/articles/1182491.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
sedymentologia
stratygrafia sekwencji
równia aluwialna
estuarium
późny ediakar
wczesny dolny kambr
kraton wschodnioeuropejski
południowo-wschodnia Polska
sedimentology
sequence stratigraphy
alluvial plain
estuary
Late Ediacaran
early Lower Cambrian
East European Craton
south-eastern Poland
Opis:
Na podstawie zdefiniowania asocjacji facjalnych i systemów depozycyjnych oraz przedstawienia ram wydzieleń wysokorozdzielczej stratygrafii sekwencji sformułowano model rozwoju i destrukcji późnoediakarskiego systemu fluwialno-estuariowego, rozprzestrzenionego w obniżeniu podlaskim i lubelskim skłonie kratonu wschodnioeuropejskiego. Wyróżniono dwie grupy systemów depozycyjnych - aluwialne i estuariowe oraz system otwartego wybrzeża. System aluwialny był początkowo reprezentowany w północno-wschodnich i zachodnich depocentrach synryftowych przez stożki aluwialne. Dystalne części stożków były obszarami depozycji fluwialnej. Duże, piaskodenne rzeki roztokowe spływały poprzecznie do osi basenu sedymentacyjnego. W końcowych stadiach ewolucji basenu aluwialnego wyrównanie topografii ryftowej i wzrost tempa subsydencji w jego południowo-wschodniej części spowodowały rozwój rzek systemu anastomozującego. Spływały one wzdłuż osi basenu z północy na południe. Zmiana rodzaju przepływu rzek roztokowych z okresowego we wczesnych etapach rozwoju basenu aluwialnego na ciągły w późniejszych stadiach, rozwój równi zalewowych rzek systemu anastomozującego i zmiana koloru osadów akumulowanych przez rzeki świadczą o zmianie klimatu suchego, pustynnego na bardziej wilgotny, umiarkowany. Późnoediakarska sukcesja silikoklastyczna basenu lubelskiego jest zapisem transgresywnego etapu ewolucji estuarium. Jej przebieg odzwierciedla pięć kolejnych parasekwencji budujących transgresywny ciąg systemowy. W najwcześniejszych etapach rozwoju estuarium lubelskie miało charakter mieszany, falowo-pływowy. W fazie maksymalnego rozwoju, w miarę znaczącego wzrostu oddziaływania pływów, było to makropływowe, hypersynchroniczne estuarium o kominowej geometrii. Na przełomie ediakaru i kambru wraz z rozwojem ciągu systemowego wysokiego stanu względnego poziomu morza rozpoczął się regres i stopniowa likwidacja estuarium lubelskiego, które przekształciło się w estuarium o mieszanej energii falowo-pływowej i następnie w otwarte wybrzeże z udziałem falowania.
Źródło:
Polish Geological Institute Special Papers; 2010, 27; 1-96
1507-9791
Pojawia się w:
Polish Geological Institute Special Papers
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies