To detect root causes of non-conforming parts - parts outside the tolerance limits - in production processes a high level of expert knowledge is necessary. This results in high costs and a low flexibility in the choice of personnel to perform analyses. In modern production a vast amount of process data is available and machine learning algorithms exist which model processes empirically. Aim of this paper is to introduce a procedure for an automated root cause analysis based on machine learning algorithms to reduce the costs and the necessary expert knowledge. Therefore, a decision tree algorithm is chosen. A procedure for its application in an automated root cause analysis is presented and simulations to prove its applicability are conducted. In this paper influences affecting the success of detection are identified and simulated e.g. the necessary amount of data dependent on the amount of variables, the ratio between categories of non-conformities and OK parts as well as detectable root causes. The simulations are based on a regression model to determine the roughness of drilling holes. They prove the applicability of machine learning algorithms for an automated root cause analysis and indicate which influences have to be considered in real scenarios.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00