In this paper a concept of a generalized directional derivative, which satisfies Leibniz rule is proposed for locally Lipschitz functions, defined on an open subset of a Banach space. Although Leibniz rule is of less importance for a subdifferential calculus, it is of course of some theoretical interest to know about the existence of generalized directional derivatives which satisfy Leibniz rule. The proposed concept of generalized directional derivatives is adopted from the work of D. R. Sherbert (1964) who determined all point derivations for the Banach algebra of Lipschitz functions over a complete metric space.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00