Method materialization is a promising data access optimization technique for multiple applications, including, in particular object programming languages with persistence, object databases, distributed computing systems, object-relational data warehouses, multimedia data warehouses, and spatial data warehouses. A drawback of this technique is that the value of a materialized method becomes invalid when an object used for computing the value of the method is updated. As a consequence, a materialized value of the method has to be recomputed. The materialized value can be recomputed either immediately after updating the object or just before calling the method. The moment the method is recomputed bears a strong impact on the overall system performance. In this paper we propose a technique of predicting access to materialized methods and objects, for the purpose of selecting the most appropriate recomputation technique. The prediction technique is based on the Hidden Markov Model (HMM). The prediction technique was implemented and evaluated experimentally. Its performance characteristics were compared to: immediate recomputation, deferred recomputation, random recomputation, and to our previous prediction technique, called a PMAP.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00