Shape variational formulation for Euler flow has already been considered by the author in (1999a, 2007c). We develop here the control approach considering the convection (or mass transport) as the "state equation" while the speed vector field is the control and we introduce the h-Sobolev curvature which turns to be shape differentiable. The value function defines a new shape metric; we derive existence of geodesic for a p-pseudo metric, verifying the triangle property with a factor 2p-1, for any p > 1. Any geodesic solves the Euler equation for incompressible fluids and, in dimension 3, is not curl free. The classical Euler equation for incompressible fluid (3), coupled with the convection (1) turns to have variational solutions when conditions are imposed on the convected tube ζ while no initial condition has to be imposed on the fluid speed V itself.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00