Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The support of a function with thin spectrum

Tytuł:
The support of a function with thin spectrum
Autorzy:
Hare, Kathryn
Powiązania:
https://bibliotekanauki.pl/articles/967150.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Colloquium Mathematicum; 1994, 67, 1; 147-154
0010-1354
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We prove that if $E ⊆ Ĝ$ does not contain parallelepipeds of arbitrarily large dimension then for any open, non-empty $S ⊆ G$ there exists a constant c > 0 such that $∥ f1_S ∥_2 ≥ c ∥ f ∥ _2$ for all $f ∈ L^2(G)$ whose Fourier transform is supported on E. In particular, such functions cannot vanish on any open, non-empty subset of G. Examples of sets which do not contain parallelepipeds of arbitrarily large dimension include all Λ(p) sets.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies