Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Wykrywanie funkcjonalnych obserwacji odstających na przykładzie monitorowania jakości powietrza

Tytuł:
Wykrywanie funkcjonalnych obserwacji odstających na przykładzie monitorowania jakości powietrza
Functional Outliers Detection by the Example of Air Quality Monitoring
Autorzy:
Kosiorowski, Daniel
Rydlewski, Jerzy P.
Zawadzki, Zygmunt
Powiązania:
https://bibliotekanauki.pl/articles/964970.pdf
Data publikacji:
2018
Wydawca:
Główny Urząd Statystyczny
Tematy:
funkcjonalne obserwacje odstające
wykrywanie funkcjonalnych obserwacji odstających
statystyka odporna
głębia funkcjonalna
analiza zanieczyszczenia powietrza
functional outliers
functional outliers detection
robust statistics
functional depth
air pollution analysis
Źródło:
Przegląd Statystyczny; 2018, 65, 1; 83-100
0033-2372
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W pracy omówiono sposoby wykrywania obserwacji odstających w zbiorach danych funkcjonalnych. Omówiono mianowicie funkcjonalne obserwacje odstające ze względu na kształt i ze względu na amplitudę. Zdefiniowano wykres wartości odstających, służący do wykrywania funkcjonalnych obserwacji odstających ze względu na kształt. Omówiono też skorygowany funkcjonalny wykres pudełkowy służący do wykrywania funkcjonalnych obserwacji odstających ze względu na amplitudę. Elementy statystycznej analizy służącej do wykrywania obserwacji odstających zobrazowano na przykładzie danych pokazujących zanieczyszczenie powietrza w Katowicach oraz w Krakowie wybranymi czterema rodzajami substancji.

Methods of functional outliers detection in functional setting have been discussed, i.e. shape outliers and magnitude outliers. Outliergram has been discussed, a tool for functional shape outliers detection. Robust adjusted functional boxplot has been discussed as well, a tool for functional magnitude outliers detection. „The elements of functional outliers analysis have been applied to air pollution data for Katowice and Kraków.”

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies