Adaptive Particle Swarm Optimization (PSO) variants have become popular in recent
years. The main idea of these adaptive PSO variants is that they adaptively change their
search behavior during the optimization process based on information gathered during
the run. Adaptive PSO variants have shown to be able to solve a wide range of difficult
optimization problems efficiently and effectively. In this paper we propose a Repulsive
Self-adaptive Acceleration PSO (RSAPSO) variant that adaptively optimizes the
velocity weights of every particle at every iteration. The velocity weights include the
acceleration constants as well as the inertia weight that are responsible for the balance between
exploration and exploitation. Our proposed RSAPSO variant optimizes the velocity
weights that are then used to search for the optimal solution of the problem (e.g., benchmark
function). We compare RSAPSO to four known adaptive PSO variants (decreasing
weight PSO, time-varying acceleration coefficients PSO, guaranteed convergence PSO,
and attractive and repulsive PSO) on twenty benchmark problems. The results show that
RSAPSO achives better results compared to the known PSO variants on difficult optimization
problems that require large numbers of function evaluations.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00