Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Score level and rank level fusion for KINECT-based multi-modal biometric system

Tytuł:
Score level and rank level fusion for KINECT-based multi-modal biometric system
Autorzy:
Rahman, Md Wasiur
Zohra, Guellati Fatma
Gavrilova, Marina L.
Powiązania:
https://bibliotekanauki.pl/articles/91778.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Lane-Emden equations
simulated annealing
legendre polynomials
neural network
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 3; 167-176
2083-2567
2449-6499
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Computational intelligence firmly made its way into the areas of consumer applications, banking, education, social networks, and security. Among all the applications, biometric systems play a significant role in ensuring an uncompromised and secure access to resources and facilities. This article presents a first multimodal biometric system that combines KINECT gait modality with KINECT face modality utilizing the rank level and the score level fusion. For the KINECT gait modality, a new approach is proposed based on the skeletal information processing. The gait cycle is calculated using three consecutive local minima computed for the distance between left and right ankles. The feature distance vectors are calculated for each person’s gait cycle, which allows extracting the biometric features such as the mean and the variance of the feature distance vector. For Kinect face recognition, a novel method based on HOG features has been developed. Then, K-nearest neighbors feature matching algorithm is applied as feature classification for both gait and face biometrics. Two fusion algorithms are implemented. The combination of Borda count and logistic regression approaches are used in the rank level fusion. The weighted sum method is used for score level fusion. The recognition accuracy obtained for multi-modal biometric recognition system tested on KINECT Gait and KINECT Eurocom Face datasets is 93.33% for Borda count rank level fusion, 96.67% for logistic regression rank-level fusion and 96.6% for score level fusion.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies