With the growing trend toward remote security verification procedures for telephone
banking, biometric security measures and similar applications, automatic speaker verification
(ASV) has received a lot of attention in recent years. The complexity of ASV
system and its verification time depends on the number of feature vectors, their dimensionality,
the complexity of the speaker models and the number of speakers. In this paper,
we concentrate on optimizing dimensionality of feature space by selecting relevant features.
At present there are several methods for feature selection in ASV systems. To
improve performance of ASV system we present another method that is based on ant
colony optimization (ACO) algorithm. After feature selection phase, feature vectors are
applied to a Gaussian mixture model universal background model (GMM-UBM) which
is a text-independent speaker verification model. The performance of proposed algorithm
is compared to the performance of genetic algorithm on the task of feature selection in
TIMIT corpora. The results of experiments indicate that with the optimized feature set,
the performance of the ASV system is improved. Moreover, the speed of verification
is significantly increased since by use of ACO, number of features is reduced over 80%
which consequently decrease the complexity of our ASV system.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00