In this paper we introduce a new modeling paradigm for developing a decision process representation called the Colored Decision Process Petri Net (CDPPN). It extends the Colored Petri Net (CPN) theoretic approach including Markov decision processes. CPNs are used for process representation taking advantage of the formal semantic and the graphical display. A Markov decision process is utilized as a tool for trajectory planning via a utility function. The main point of the CDPPN is its ability to represent the mark-dynamic and trajectory-dynamic properties of a decision process. Within the mark-dynamic properties framework we show that CDPPN theoretic notions of equilibrium and stability are those of the CPN. In the trajectory-dynamic properties framework, we optimize the utility function used for trajectory planning in the CDPPN by a Lyapunov-like function, obtaining as a result new characterizations for final decision points (optimum point) and stability. Moreover, we show that CDPPN mark-dynamic and Lyapunov trajectory-dynamic properties of equilibrium, stability and final decision points converge under certain restrictions. We propose an algorithm for optimum trajectory planning that makes use of the graphical representation (CPN) and the utility function. Moreover, we consider some results and discuss possible directions for further research.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00