Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bayesian Analysis of Dynamic Conditional Correlation Using Bivariate GARCH Models

Tytuł:
Bayesian Analysis of Dynamic Conditional Correlation Using Bivariate GARCH Models
Bayesowska analiza dynamicznej korelacji warunkowej z wykorzystaniem dwuwymiarowych modeli GARCH
Autorzy:
Osiewalski, Jacek
Pipień, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/907620.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
model comparison
Bayes factors
multivariate GARCH processes
BEKK models
DCC models
exchange rates
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2005, 192
0208-6018
2353-7663
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Multivariate ARCH-typc specifications provide a theoretically promising framework for analyses of correlation among financial instruments because they can model time-varying conditional covariance matrices. However, general VechGARCH models are too heavily parameterized and, thus, impractical for more than 2- or 3-dimensional vector lime series. A simple t-BEKK(l.l) specification seems a good compromise between parsimony and generality. Unfortunately, Bollerslev’s constant conditional correlation (CCC) model cannot be nested within VECH or BEKK GARCH structures. Recently, Engle (2002) proposed a parsimoniously parameterized generalization of the CCC model; this dynamic conditional correlation (DCC) specification may outperform many older multivariate GARCH models. In this paper we consider Bayesian analysis of the conditional correlation coefficient within different bivariate GARCH models, which are compared using Bayes factors and posterior odds. For daily growth rales of PLN/USD and PLN/DEM (6.02.1996-28.12.2001) we show that the t-BEKK(l, 1) specification fits the bivariate series much better than DCC models, but the posterior means of conditional correlation coefficients obtained within different models are very highly correlated.

Wielowymiarowe specyfikacje ty^pu ARCH stanowią teoretycznie obiecujące ramy dla analiz skorelowania instrumentów finansowych, ponieważ umożliwiają modelowanie zmiennych w czasie macierzy warunkowych kowariancji. Jednak ogólne modele VechGARCH mają zbyt wiele parametrów, są więc niepraktyczne w przypadku więcej niż 2- lub 3-wymiarowych wektorowych szeregów czasowych. Prosta specyfikacja t-BEKK(1,1) wydaje się dobrym kompromisem pomiędzy oszczędnością parametryzacji i ogólnością modelu. Niestety model stałych korelacji warunkowych (CCC) Boilersleva nie jest szczególnym przypadkiem struktur VECH czy BEKK. Ostatnio Englc (2002) zaproponował oszczędnie sparametryzowane uogólnienie modelu CCC; ta specyfikacja o dynamicznej korelacji warunkowej (DCC) może zdominować wiele starszych wielowymiarowych modeli GARCH. W artykule rozważamy bayesowską analizę warunkowego współczynnika korelacji w ramach różnych dwuwymiarowych modeli GARCH, które są porównywane przy użyciu czynników Bayesa i ilorazów szans a posteriori. Dla dziennych stóp zmian kursów PLN/USD i PLN/DEM (6.02.1996 - 28.12.2001) wykazuje się, że specyfikacja t-BEKK(l.l) opisuje dwuwymiarowy szereg czasowy znacznie lepiej niż modele DCC. Jednak wartości oczekiwane a posteriori warunkowych współczynników korelacji, uzyskane w ramach różnych modeli, są bardzo silnie skorelowane.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies