Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Exchange Rates: Predictable but not Explainable? Data Mining with Leading Indicators and Technical Trading Rules

Tytuł:
Exchange Rates: Predictable but not Explainable? Data Mining with Leading Indicators and Technical Trading Rules
Możliwości modelowania i prognozowania kursów walutowych: wskaźniki wyprzedzające i analiza techniczna
Autorzy:
Brandl, Bernd
Powiązania:
https://bibliotekanauki.pl/articles/907593.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
exchange rates
data mining
artificial neural networks
genetic algorithms
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2005, 192
0208-6018
2353-7663
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper presents a data mining approach to forecasting exchange rates. It is assumed that exchange rates are determined by both fundamental and technical factors. The balance of fundamental and technical factors varies for each exchange rate and frequency. It is difficult for forecasters to establish the relative relevance of different kinds of factors given this mixture; therefore the utilization of data mining algorithms is advantageous. The approach applied uses a genetic algorithm and neural networks. Out-of-sample forecasting results are illustrated for five exchange rates on different frequencies and it is shown that data mining is able to produce forecasts that perform well.

W artykule przedstawiono proces eksploracji danych statystycznych w prognozowaniu kursów walutowych. Zakładamy, że kursy walutowe pozostają pod wpływem zarówno czynników o charakterze fundamentalnym, jak i czynników pozaekonomicznych. Równowaga pomiędzy tymi czynnikami różni się w zależności od rodzaju kursu walutowego i częstotliwości jego pomiaru. Prognostykom trudno jest ustalić względną siłę wpływu różnych czynników, stąd analiza polegająca na eksploracji danych ma określone zalety. W proponowanym podejściu wykorzystano algorytmy genetyczne i sztuczne sieci neuronowe. Przedstawiliśmy wyniki eksperymentów prognostycznych poza próbą statystyczną w odniesieniu do pięciu kursów walutowych, obserwowanych z różną częstotliwością. Pokazaliśmy, że metoda eksploracji danych może stanowić skuteczne narzędzie prognostyczne.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies