Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Remarks on the generalized probability of the bifuzzy event

Tytuł:
Remarks on the generalized probability of the bifuzzy event
Uwagi o uogólnionym prawdopodobieństwie zdarzenia dwoistorozmytego
Autorzy:
Gerstenkorn, Tadeusz
Gerstenkorn, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/907034.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
bifuzzy (intuitionistic) event
generalized-probability
fuzzy set
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2008, 216
0208-6018
2353-7663
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The presentation is a continuation of a paper at MSA’04 (T. Gerstenkorn, J. Gerstenkorn (2007)). In 1978 Ph. Smets proposed the so-called g-probability of a fuzzy event as a generalization of the L. Zadeh’s probability of 1968. In 1980 S. Heilpem also discusscd g-probability and analysed its properties. In 1992 Ph. Smets discussed once again the same his own problem and demonstrated its axiomatic properties. In this elaboration we desire to discuss the g-probability of the bifuzzy (intuitionistic) event and its properties as consistent with Kolmogoroff axiomatics.

Niniejsza prezentacja jest kontynuacją pracy pt. Probability of fuzzy event. Review of problems (Prawdopodobieństwo zdarzenia rozmytego. Przegląd zagadnień), przedstawionej na WAS'05 Acta Univ. Lodz., Folia Oeconomica 2007. W 1978 r. Philippe Smets zaproponował tzw. g-prawdopodobieństwo zdarzenia rozmytego jako pewne uogólnienie prawdopodobieństwa tegoż zdarzenia podanego Przez Lotfi Zadeha w 1968 r. W 1980 r. Stanisław Heilpem także rozważał g-prawdopodobieństwo i analizował jego własności. W 1982 r. Ph. Smets ponownie i szeroko rozpatrywał g-prawdopodobieństwo i dowodził jego aksjomatycznych własności. W przedstawianym opracowaniu pragniemy rozpatrzyć g-prawdopodobieństwo zdarzenia dwoistorozmytego (intuicjonistycznego) i jego własności jako zgodne z aksjomatyką Kołmogorowa.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies