Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Extreme Value Distributions and Robust Estimation

Tytuł:
Extreme Value Distributions and Robust Estimation
Rozklady wartości ekstremalnych a estymacja odporna
Autorzy:
Trzpiot, Grażyna
Powiązania:
https://bibliotekanauki.pl/articles/906304.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Extreme value theory
Extreme value distributions
Robust estimation
M-estimator
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Modele stochastyczne są istotne dla zastosowań w finansach czy w ubezpieczeniach. Statystyczne metody estymacji parametrycznej wykorzystywane najczęściej do wyznaczania parametrów modeli to metoda największej wiarygodności lub MNK. Metody te dają optymalne oszacowania modeli, jednakże odchylenia obserwowanych wartości w kalibrowanym modelu mogą zachwiać dobre własności estymatorów. Przedstawimy pewne aspekty estymacji odpornej w kontekście rozkładów wartości ekstremalnych. Podejmiemy dyskusję metodologicznych aspektów zagadnienia pokazując, jak estymatory odporne wpływają na jakość analiz z wykorzystaniem rozkładów wartości ekstremalnych poprzez informacje o obserwacjach wpływowych.

In parametric statistics estimators such as maximum likelihood or OLS typically estimate stochastic models, which play an important role in finance and insurance. These methods are generally optimal for an assumed reference model. Slight deviations from the assumed model may easy destroy the good statistical properties of the estimator. We present some aspects related to robust estimation in the context of extreme value theory (ETV). We discuss some methodological aspects how robust methods can improve the quality of extreme value theory data analysis by providing information on influential observations.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies