Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Music Genre Recognition Using Convolutional Neural Networks

Tytuł:
Music Genre Recognition Using Convolutional Neural Networks
Rozpoznawanie gatunków muzycznych z użyciem splotowych sieci neuronowych
Autorzy:
Matocha, M.
Zieliński, S. K.
Powiązania:
https://bibliotekanauki.pl/articles/88408.pdf
Data publikacji:
2018
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
automatyczne rozpoznawanie gatunków muzycznych
splotowe sieci neuronowe
pozyskiwanie informacji w muzyce
automatic music genre recognition
convolutional neural networks
music information retrieval
Źródło:
Advances in Computer Science Research; 2018, 14; 125-142
2300-715X
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The aim of this study was to develop a music genre classifier using convolutional neural networks and to compare its performance with a traditional algorithm based on support vector machines. A distinct feature of the proposed approach was to utilize two-channel stereo signals at the input of the convolutional network. The proposed method yielded similar results compared to those obtained with the traditional approach, demonstrating the potential of the proposed method and indicating the need for its further optimization. Using two-channel stereo signals at the input of the algorithm showed no improvements over the baseline method exploiting single-channel recordings, suggesting that monaural signals fed to the convolutional network might be sufficient to undertake the task of music genre recognition. According to the results, the network ‘prioritized’ the temporal changes over the frequency variations of the signals. This observation tentatively implies that the classifiers specifically designed to account for temporal changes might potentially better serve the task of music genre recognition than the convolutional neural networks.

Celem niniejszej pracy było opracowanie klasyfikatora gatunków muzycznych z użyciem splotowych sieci neuronowych i porównanie go z tradycyjnym algorytmem opartym na maszynie wektorów wspierających. Wyróżniającą cechą zaproponowanego podejścia było wykorzystanie dwu-kanałowego dźwięku stereofonicznego na wejściu sieci splotowej. Zaproponowana metoda dała podobne wyniki do rezultatów otrzymanych z użyciem podejścia tradycyjnego, demonstrując potencjał zaproponowanej metody oraz wskazując na potrzebę jej dalszej optymalizacji. Wykorzystanie dwu-kanałowego dźwięku stereofonicznego na wejściu algorytmu nie poprawiło wyników w porównaniu z metodą bazową wykorzystującą nagrania jednokanałowe, sugerując, iż zastosowanie dźwięków monofonicznych na wejściu splotowej sieci neuronowej jest adekwatne do celów rozpoznawania gatunków muzycznych. Zgodnie z uzyskanymi wynikami, sieć potraktowała priorytetowo zmiany czasowe w porównaniu ze zmianami częstotliwościowymi sygnałów. Obserwacja ta pozwala wstępnie przypuszczać że klasyfikatory specjalnie zaprojektowane, by uwzględnić zmiany czasowe, potencjalnie mogłyby lepiej służyć celom rozpoznawania gatunków muzycznych niż neuronowe sieci splotowe.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies