Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Bose-Einstein statistics: Remarks on Debye, Natanson, and Ehrenfest contributions and the emergence of indistinguishability principle for quantum particles

Tytuł:
The Bose-Einstein statistics: Remarks on Debye, Natanson, and Ehrenfest contributions and the emergence of indistinguishability principle for quantum particles
Autorzy:
Spałek, Józef
Powiązania:
https://bibliotekanauki.pl/articles/783376.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Umiejętności
Tematy:
black body radiation, Planck’s law of radiation, particle indistinguishability, quantum statistical physics, Natanson statistics, Bose-Einstein statistics
promieniowanie ciała doskonale czarnego, rozkład Plancka dla promieniowania, nierozróżnialność cząstek, kwantowa fizyka statystyczna, statystyka Natansona, statystyka Bosego-Einsteina
Źródło:
Studia Historiae Scientiarum; 2020, 19
2451-3202
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The principal mathematical idea behind the statistical properties of black-body radiation (photons) was introduced already by L. Boltzmann (1877/2015) and used by M. Planck (1900; 1906) to derive the frequency distribution of radiation (Planck’s law) when its discrete (quantum) structure was additionally added to the reasoning.The fundamental physical idea – the principle of indistinguishability of the quanta (photons) – had been somewhat hidden behind the formalism and evolved slowly.Here the role of P. Debye (1910), H. Kamerlingh Onnes and P. Ehrenfest (1914) is briefly elaborated and the crucial role of W. Natanson (1911a; 1911b; 1913) is emphasized.The reintroduction of this Natanson’s statistics by S. N. Bose (1924/2009) for light quanta (called photons since the late 1920s), and its subsequent generalization to material particles by A. Einstein (1924; 1925) is regarded as the most direct and transparent, but involves the concept of grand canonical ensemble of J. W. Gibbs (1902/1981), which in a way obscures the indistinguishability of the particles involved.It was ingeniously reintroduced by P. A. M. Dirac (1926) via postulating (imposing) the transposition symmetry onto the many-particle wave function.The above statements are discussed in this paper, including the recent idea of the author (Spałek 2020) of transformation (transmutation) – under specific conditions – of the indistinguishable particles into the corresponding to them distinguishable quantum particles.The last remark may serve as a form of the author’s post scriptum to the indistinguishability principle.

Zasadnicza idea matematyczna opisu własności statystycznych promieniowania ciała doskonale czarnego (fotonów) wprowadzona została już przez L. Boltzmanna (1877/2015) i użyta przez M. Plancka (1900; 1906) do uzasadnienia wyprowadzenia rozkładu po częstościach dla tego promieniowania (prawo Plancka), jeśli jego dyskretna (kwantowa) struktura została dodatkowo dodana do tego rozumowania.Fundamentalna idea fizyczna – zasada nierozróżnialności kwantów (fotonów) jest w pewnym stopniu ukryta w tym formalizmie i ewoluowała powoli.Tutaj omawiamy krótko rolę P. Debye’a (1910), H. Kamerlingha Onnesa i P. Ehrenfesta (1914), a przede wszystkim podkreślamy zasadniczy wkład W. Natansona (1911a; 1911b; 1913).Ponowne wprowadzenie tej statystyki przez S. N. Bosego (1924/2009) dla kwantów światła (zwanych fotonami od końca lat dwudziestych XX wieku) i następującej po niej statystyki A. Einsteina (1924,1925) dla cząstek materialnych jest uważane za najbardziej bezpośrednie i przejrzyste, ale zawiera koncepcje dużego rozkładu kanonicznego J. W. Gibbsa (1902/1981) i do pewnego stopnia przesłania także zasadę nierozróżnialności cząstek.Tę zasadę wprowadził ponownie w sposób genialny P. A. M. Dirac (1926), włączając (narzucając) symetrię względem przestawień pary współrzędnych cząstek (inwersji) w wielocząstkowej funkcji falowej.Powyższe stwierdzenia są przedyskutowane w tej pracy, włącznie z niedawno sformułowaną ideą autora (Spałek 2020) przekształcenia (transmutacji) – w specyficznych warunkach – cząstek nierozróżnialnych w korespondujące z nimi, rozróżnialne cząstki.Ta ostatnia uwaga ma służyć jako post scriptum autora do zasady nierozróżnialności.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies