Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Superconvergence in the finite element method

Tytuł:
Superconvergence in the finite element method
Autorzy:
Leyk, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/748740.pdf
Data publikacji:
1982
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
Źródło:
Mathematica Applicanda; 1982, 10, 20
1730-2668
2299-4009
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
MR0707821

For some variants of the finite element method there exist points having a remainder value or a derivation remainder remarkably less than those given by global norms. This phenomenon is called superconvergence and the points are called superconvergence points. The generalized problem corresponding to (1) is as follows: Let Hk(Ω) be Sobolev space and Hk0(Ω) the completion of the space C∞0(Ω) with norm ∥⋅∥k,Ω. Find u∈H10(Ω) such that for each v∈H10(Ω), (2) a(u,v)=(f,v)0 holds, where a(u,v)=∫Ω(∑n|α|=0aα(x)DαuDαv)dx, (f,v)0=∫Ωf(x)v(x)dx, Dα=Dα11⋯Dαnn,1.5pt Dαiiu=∂αiu/∂xαii, i=1,n¯¯¯¯¯¯¯¯. The approximate problem of the finite element variant considered is the following: Find uh∈Vh such that (3) for all v∈Vh, a(uh,v)=(f,v)0. The main result is the theorem: Let ai∈C(Ω¯), D1ai,D2ai∈L∞(Ω),i=1,2,∥σ∥∞L(Ω)≤σ,f∈L2(Ω). Suppose the eigenvalues of the operator L are different from zero, and u∈H4(Ω)∩H10(Ω). Then there exists h0 such that for h≤h0, h2∑P∈G|grad(u−uh)(P)|≤Ch3(|u|3+|u|4), where u and uh are the solutions of problems (2) and (3), respectively, and C is some constant independent of h. Further, |u|k={∫Ω(∑|α|=k(Dαu)2)dx}1/2, G=⋃N1N2i=1Fi(R), R={(±3√/3,±3√/3)} is a Gauss point set in the quadrant S={(ξ1,ξ2):|ξk|≤1,k=1,2}, and Fi(F(1)i,F(2)i):S→ei, ei an element; F(1)i(ξ1,ξ2)=x(i)0+h1ξ1/2, F(2)i(ξ1,ξ2)=y(i)0+h2ξ2/2, and (x(i)0,y(i)0) is the middle element.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies