Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On constructions of isometric copies of \(L^p (0, 1)\) spaces \((0 \lt p \leq 2)\) by stochastic \(p\)-stable processes

Tytuł:
On constructions of isometric copies of \(L^p (0, 1)\) spaces \((0 \lt p \leq 2)\) by stochastic \(p\)-stable processes
Autorzy:
Grala-Michalak, Jolanta
Michalak, Artur
Powiązania:
https://bibliotekanauki.pl/articles/746599.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
\(L^p\)-spaces
Źródło:
Commentationes Mathematicae; 2008, 48, 1
0373-8299
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let \(S^p = \{S_t^p : t = \frac{k}{2^n},\ 0 \leq k \leq 2^n,\ n \in\mathbb{N}\}\) be a stochastic process on a probability space \((\Omega, \Sigma, P)\) with independent and time homogeneous increments such that \(S_t^p - S_u^p\) is identically distributed as \((t- u)^{1/p} Z_p\) for each \(0 \leq u \lt t \leq 1\) where \(Z_p\) is a given symmetric \(p\)-stable distribution. We show that the closed linear hull of \(S^p\) forms an isometric copy of the real Lebesgue space \(L^p (0, 1)\) in any quasi-Banach space \(X\) consisting of \(P\)-a.e. equivalence classes of \(\Sigma\)-measurable real functions on \(\Omega\) equipped with a rearrangement invariant quasi-norm which contains \(S^p\) as a subset. It is possible to construct processes \(S^p\) for \(0 \lt p \leq 2\) on \([0, 1]\) with the Lebesgue measure. We show also a complex version of the result.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies