Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On constructions of isometric embeddings of nonseparable \(L^p\) spaces, \(0 \lt p \leq 2\)

Tytuł:
On constructions of isometric embeddings of nonseparable \(L^p\) spaces, \(0 \lt p \leq 2\)
Autorzy:
Grala-Michalak, Jolanta
Michalak, Artur
Powiązania:
https://bibliotekanauki.pl/articles/745759.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
\(L^p\)-spaces
Źródło:
Commentationes Mathematicae; 2008, 48, 2
0373-8299
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let \(J\) be an infinite set. Let \(X\) be a real or complex \(\sigma\)-order continuous rearrangement invariant quasi-Banach function space over \((\{0, 1\}^J,\ \mathcal{B}^J,\ \lambda_J)\), the product of \(J\) copies of the measure space \((\{0, 1\},\ 2^{0,1},\ \frac{1}{2} \delta_0 + \frac{1}{2}\delta_1)\). We show that if \(0 \lt p \lt 2\) and \(X\) contains a function \(f\) with the decreasing rearrangement \(f^∗\) such that \(f^∗(t) \gt t^{-\frac{1}{p}}\) for every \(t\in (0, 1)\), then it contains an isometric copy of the Lebesgue space \(L^p (\lambda_J)\). Moreover, if \(X\) contains a function \(f\) such that \(f^∗(t) \gt \sqrt{|\text{ln}(t)|}\) for every \(t\in (0, 1)\), then it contains an isometric copy of the Lebesgue space \(L^2(\lambda_J)\).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies