Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The sum number of d-partite complete hypergraphs

Tytuł:
The sum number of d-partite complete hypergraphs
Autorzy:
Teichert, Hanns-Martin
Powiązania:
https://bibliotekanauki.pl/articles/744247.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sum number
sum hypergraphs
d-partite complete hypergraph
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 1; 79-91
2083-5892
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph $ ⁺_d(S) = (V,)$, where V = S and $ = {{v₁,...,v_d}: (i ≠ j ⇒ v_i ≠ v_j)∧ ∑^d_{i=1} v_i ∈ S}$. For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices $w₁,...,w_σ ∉ V$ such that $ ∪{ w₁,..., w_σ}$ is a sum hypergraph.
In this paper, we prove
$σ(^{d}_{n₁,...,n_d}) = 1 + ∑^d_{i=1} (n_i -1 ) + min{0,⌈1/2(∑_{i=1}^{d-1} (n_i -1) - n_d)⌉}$,
where $^{d}_{n₁,...,n_d}$ denotes the d-partite complete hypergraph; this generalizes the corresponding result of Hartsfield and Smyth [8] for complete bipartite graphs.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies