We consider the question of the range of the number of cycles possible in a 2-factor of a 2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced $K_{1,3}$.) In particular, we show that for such a graph G of order n ≥ 51 with δ(G) ≥ (n-2)/3, G contains a 2-factor with exactly k cycles, for 1 ≤ k ≤ (n-24)/3. We also show that this result is sharp in the sense that if we lower δ(G), we cannot obtain the full range of values for k.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00