Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On graphs all of whose {C₃,T₃}-free arc colorations are kernel-perfect

Tytuł:
On graphs all of whose {C₃,T₃}-free arc colorations are kernel-perfect
Autorzy:
Galeana-Sánchez, Hortensia
García-Ruvalcaba, José
Powiązania:
https://bibliotekanauki.pl/articles/743429.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
kernel-perfect digraph
m-coloured digraph
Źródło:
Discussiones Mathematicae Graph Theory; 2001, 21, 1; 77-93
2083-5892
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A digraph D is called a kernel-perfect digraph or KP-digraph when every induced subdigraph of D has a kernel.
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows:
V( ζ(D)) = V(D), and
A( ζ(D)) = ∪_{i} {(u,v) with colour i: there exists a monochromatic path of colour i from the vertex u to the vertex v contained in D}.
We will denoted by T₃ and C₃, the transitive tournament of order 3 and the 3-directed-cycle respectively; both of whose arcs are coloured with three different colours.
Let G be a simple graph. By an m-orientation-coloration of G we mean an m-coloured digraph which is an asymmetric orientation of G.
By the class E we mean the set of all the simple graphs G that for any m-orientation-coloration D without C₃ or T₃, we have that ζ(D) is a KP-digraph.
In this paper we prove that if G is a hamiltonian graph of class E, then its complement has at most one nontrivial component, and this component is K₃ or a star.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies