Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Acyclic reducible bounds for outerplanar graphs

Tytuł:
Acyclic reducible bounds for outerplanar graphs
Autorzy:
Borowiecki, Mieczysław
Fiedorowicz, Anna
Hałuszczak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/743164.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
acyclic colouring
additive hereditary class
outerplanar graph
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 219-239
2083-5892
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions:
1. $G[V_i] ∈ _i$ for i = 1,...,n,
2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that $u ∈ V_i$ and $v ∈ V_j$ is acyclic.
A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring. If ⊆ R, then we say that R is an acyclic reducible bound for . In this paper we present acyclic reducible bounds for the class of outerplanar graphs.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies