Every characteristic function φ can be written in the following way: φ(ξ) = 1/(h(ξ) + 1), where h(ξ) = ⎧ 1/φ(ξ) - 1 if φ(ξ) ≠ 0 ⎨ ⎩ ∞ if φ(ξ) = 0 This simple remark implies that every characteristic function can be treated as a simple fraction of the function h(ξ). In the paper, we consider a class C(φ) of all characteristic functions of the form $φ_{a}(ξ) = [a/(h(ξ) + a)]$, where φ(ξ) is a fixed characteristic function. Using the well known theorem on simple fraction decomposition of rational functions we obtain that convolutions of measures $μ_{a}$ with $μ̂_{a}(ξ) = φ_{a}(ξ)$ are linear combinations of powers of such measures. This can simplify calculations. It is interesting that this simplification uses signed measures since coefficients of linear combinations can be negative numbers. All the results of this paper except Proposition 1 remain true if we replace probability measures with complex valued measures with finite variation, and replace the characteristic function with Fourier transform.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00