In this paper, we study multivalued linear operators (MLO's) and their resolvents in non reflexive Banach spaces, introducing a new condition of a minimal growth at infinity, more general than the Hille-Yosida condition. Then we describe the generalized semigroups induced by MLO's. We present a criterion for an MLO to be a generator of a generalized semigroup in an arbitrary Banach space. Finally, we obtain some existence results for differential inclusions with MLO's and various types of multivalued nonlinearities. As a consequence, we give theorems on the existence of local, global and bounded solutions of the Cauchy problem for degenerate differential inclusions.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00