A (usual) hypersubstitution of type τ is a function which takes each operation symbol of the type to a term of the type, of the same arity. The set of all hypersubstitutions of a fixed type τ forms a monoid under composition, and semigroup properties of this monoid have been studied by a number of authors. In particular, idempotent and regular elements, and the Green's relations, have been studied for type (n) by S.L. Wismath. A generalized hypersubstitution of type τ=(n) is a mapping σ which takes the n-ary operation symbol f to a term σ(f) which does not necessarily preserve the arity. Any such σ can be inductively extended to a map σ̂ on the set of all terms of type τ=(n), and any two such extensions can be composed in a natural way. Thus, the set $Hyp_{G}(n)$ of all generalized hypersubstitutions of type τ=(n) forms a monoid. In this paper we study the semigroup properties of $Hyp_{G}(n)$. In particular, we characterize the idempotent and regular generalized hypersubstitutions, and describe some classes under Green's relations of this monoid.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00