Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Testing word embeddings for Polish

Tytuł:
Testing word embeddings for Polish
Autorzy:
Mykowiecka, Agnieszka
Marciniak, Małgorzata
Rychlik, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/677111.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Slawistyki PAN
Tematy:
distributional semantics
word embeddings
model evaluation
synonymy
analogy
Źródło:
Cognitive Studies; 2017, 17
2392-2397
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Testing word embeddings for PolishDistributional Semantics postulates the representation of word meaning in the form of numeric vectors which represent words which occur in context in large text data. This paper addresses the problem of constructing such models for the Polish language. The paper compares the effectiveness of models based on lemmas and forms created with Continuous Bag of Words (CBOW) and skip-gram approaches based on different Polish corpora. For the purposes of this comparison, the results of two typical tasks solved with the help of distributional semantics, i.e. synonymy and analogy recognition, are compared. The results show that it is not possible to identify one universal approach to vector creation applicable to various tasks. The most important feature is the quality and size of the data, but different strategy choices can also lead to significantly different results. Testowanie wektorowych reprezentacji dystrybucyjnych słów języka polskiegoSemantyka dystrybucyjna opiera się na założeniu, że znaczenie słów wyrażone jest za pomocą wektorów reprezentujących, w sposób bezpośredni bądź pośredni, konteksty, w jakich słowo to jest używane w dużym zbiorze tekstów. Niniejszy artykuł dotyczy ewaluacji wielu takich modeli skonstruowanych dla języka polskiego. W pracy porównano skuteczność modeli opartych na lematach i formach słów, utworzonych przy wykorzystaniu sieci neuronowych na danych z dwóch różnych korpusów języka polskiego. Ewaluacji dokonano na podstawie wyników dwóch typowych zadań rozwiązywanych za pomocą metod semantyki dystrybucyjnej, tzn. rozpoznania występowania synonimii i analogii między konkretnymi parami słów. Uzyskane wyniki dowodzą, że nie można wskazać jednego uniwersalnego podejścia do tworzenia modeli dystrybucyjnych, gdyż ich skuteczność jest różna w zależności od zastosowania. Najważniejszą cechą wpływającą na jakość modelu jest jakość oraz rozmiar danych, ale wybory różnych strategii uczenia sieci mogą również prowadzić do istotnie odmiennych wyników.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies