Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Differentiating between machine translation and student translation: red flags and salient lexicogrammatical features.

Tytuł:
Differentiating between machine translation and student translation: red flags and salient lexicogrammatical features.
Autorzy:
Innes, Andrew Richard Burns
Powiązania:
https://bibliotekanauki.pl/articles/605842.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
SFL, machine translation, detection, student essays.
Źródło:
Lublin Studies in Modern Languages and Literature; 2019, 43, 4
0137-4699
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Der Band enthält die Abstracts ausschließlich in englischer Sprache.

ABSTRACTMachine translation enables students to produce work in the target L2 which may be superior to that which they could produce otherwise.  The present study examines whether use of machine translation can be detected by teachers.  Seventeen native teachers compared and assessed the authorship of five human translations (HT) and five machine translations (MT) of Japanese news stories.  Native teachers were able to accurately detect the difference in 74.04% of cases due to increased passive clauses (a ratio of 1 to 2.5), and inappropriate pronoun use (a ratio of 1 to 6.5) when MT was used. 

L'article contient uniquement les résumés en anglais.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies