Artykuł poświęcony jest wybranym zagadnieniom zależności zmiennych losowych, które można opisać za pomocą funkcji łączących (kopula). Opisano związek dwuwymiarowego rozkładu normalnego z gaussowską funkcją łączącą wraz z najczęściej stosowaną miarą zależności: współczynnikiem korelacji Pearsona. Wnioski odniesiono do przypadku wielowymiarowych rozkładów eliptycznych, w szczególności rozkładów normalnych. Zbadano także rozkład sumy zmiennych losowych pod względem najczęściej stosowanej miary ryzyka, jaką jest VaR. Pokazano, że największe wartości tej miary wcale nie muszą zachodzić dla ścisłej zależności ani dla niezależności.
The main aim of the article is to show chosen issues of random variables which can be described in the form of copula functions. In the first part the relationship between two-dimensional normal distribution with Gaussian copula function was shown together with the most common measure - Pearson correlation coefficient. Conclusions were referred to multivariate elliptical distributions, mainly to normal distributions with major focus on generally used risk measure - value at risk (VaR). It was shown that the highest values of this measure need not appear for close dependence as well as for independence.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00