Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Wpływ metody redukcji szumu losowego na dokładność prognoz ekonomicznych szeregów czasowych

Tytuł:
Wpływ metody redukcji szumu losowego na dokładność prognoz ekonomicznych szeregów czasowych
The Effect of Random Noise Reduction Method on the Accuracy of Forecasting Economic Time Series
Autorzy:
Miśkiewicz-Nawrocka, Monika
Powiązania:
https://bibliotekanauki.pl/articles/593330.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Lapunow wykładnik
Metoda najbliższych sąsiadów
Największy wykładnik
Prognozowanie za pomocą największego wykładnika lapunowa
Redukcja szumu losowego
Współczynnik NRL
Lyapunov exponent method of prediction
Nearest neighbor method
NRL indicator largest Lyapunov exponent
Random noise reduction
State space reconstruction
Źródło:
Studia Ekonomiczne; 2015, 227; 41-58
2083-8611
Język:
polski
Prawa:
CC BY-NC: Creative Commons Uznanie autorstwa - Użycie niekomercyjne 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Od momentu pojawienia się w literaturze pojęcia deterministycznego chaosu można zaobserwować ogromny wzrost zainteresowania wielu badaczy teorią nieliniowych układów dynamicznych. Owo zainteresowanie zaowocowało pojawieniem się nowych metod predykcji szeregów czasowych, tj. metody największego wykładnika Lapunowa oraz metody najbliższych sąsiadów. Rzeczywiste szeregi czasowe są zwykle zaburzone przez szum losowy, który może komplikować problem ich prognozowania. Obecność szumu w danych może znacząco wpływać na jakość otrzymanych prognoz, dlatego głównym celem artykułu będzie ocena dokładności prognozowania szeregów czasowych poddanych procesowi redukcji szumu losowego oraz ocena efektywoności wybranej metody redukcji.

Since the deterministic chaos appeared in the literature, we have observed a huge increase of interest in nonlinear dynamic systems theory among researchers. This interest has led to the creation of new methods of time series prediction, e.g. the method of the largest Lyapunov exponent and the nearest neighbors. Real time series are usually distributed by random noise, which can complicate the problem of time series forecasting. As the presence of noise in the data can significantly affect the quality of forecasts, the aim of the article is to evaluate the accuracy of predicting the time series filtered using the nearest neighbor method and the effectiveness of the chosen method of reduction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies