Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Forecasting Yield Curves in an Adaptive Framework

Tytuł:
Forecasting Yield Curves in an Adaptive Framework
Autorzy:
Chen, Ying
Li, Bo
Powiązania:
https://bibliotekanauki.pl/articles/483285.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
interest rates
functional principal component analysis
local parametric model
Nelson-Siegel model
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2011, 3, 4; 237-259
2080-0886
2080-119X
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Forecasting yield curves with regime switches is important in academia and financial industry. As the number of interest rate maturities increases, it poses difficulties in estimating parameters due to the curse of dimensionality. To deal with such a feature, factor models have been developed. However, the existing approaches are restrictive and largely based on the stationarity assumption of the factors. This inaccuracy creates non-ignorable financial risks, especially when the market is volatile. In this paper, a new methodology is proposed to adaptively forecast yield curves. Specifically, functional principal component analysis (FPCA) is used to extract factors capable of representing the features of yield curves. The local AR(1) model with time-dependent parameters is used to forecast each factor. Simulation and empirical studies reveal the superiority of this method over its natural competitor, the dynamic Nelson-Siegel (DNS) model. For the yield curves of the U.S. and China, the adaptive method provides more accurate 6- and 12-month ahead forecasts.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies