Forecasting of prices of commodities, especially those of agricultural commodities, is very difficult because they are not only governed by demand and supply but also by so many other factors which are beyond control, such as weather vagaries, storage capacity, transportation, etc. In this paper time series models namely ARIMA (Autoregressive Integrated Moving Average) methodology given by Box and Jenkins has been used for forecasting prices of Groundnut oil in Mumbai. This approach has been compared with ANN (Artificial Neural Network) methodology. The results showed that ANN performed better than the ARIMA models in forecasting the prices.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00