Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

ZASTOSOWANIE ANALIZY SKUPIEŃ I LASÓW LOSOWYCH W KLASYFIKACJI GMIN W POLSCE NA SKALI POZIOMU ROZWOJU SPOŁECZNO-GOSPODARCZEGO

Tytuł:
ZASTOSOWANIE ANALIZY SKUPIEŃ I LASÓW LOSOWYCH W KLASYFIKACJI GMIN W POLSCE NA SKALI POZIOMU ROZWOJU SPOŁECZNO-GOSPODARCZEGO
USING CLUSTER ANALYSIS AND TECHNIQUE OF RANDOM FORESTS IN THE CLASSIFICATION OF COMMUNES IN POLAND ON THE SCALE OF SOCIO-ECONOMIC DEVELOPMENT
Autorzy:
Perdał, Robert
Powiązania:
https://bibliotekanauki.pl/articles/452997.pdf
Data publikacji:
2018
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
analiza skupień
lasy losowe
klasyfikacja
gminy
rozwój społeczno-gospodarczy
cluster analysis
random forests
classification
communes
socio-economic development
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2018, 19, 3; 263-273
2082-792X
Język:
polski
Prawa:
CC BY-NC: Creative Commons Uznanie autorstwa - Użycie niekomercyjne 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W artykule przedstawiono algorytm klasyfikacji gmin na skali poziomu rozwoju społeczno-gospodarczego. Algorytm ten obejmuje cztery etapy: (1) dobór i redukcja zmiennych, (2) konstrukcja miernika syntetycznego i uszeregowanie liniowe gmin na skali poziomu rozwoju społeczno-gospodarczego, (3) grupowanie gmin metodą analizy skupień wg algorytmu k-średnich na podstawie wartości miernika syntetycznego, (4) weryfikacja klasyfikacji metodą lasów losowych. W wyniku procedury klasyfikacyjnej zidentyfikowano dywergencję rozwoju społeczno-gospodar¬czego w Polsce.

"The article presents the algorithm of classification of communes on the scale of socio-economic development level. The algorithm includes four steps: (1) selection and reduction of variables, (2) construction of a synthetic measure and linear ordering of communes on the scale of socio-economic development level, (3) grouping of communes by cluster analysis (k-means algorithm) based on the synthetic measure, (4) verification of classification using the random forests method. As a result of the classification procedure was identified the progressive divergence of socio-economic development in Poland."

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies