F. Galaz-Fontes (Proc. AMS., 1998) has established a criterion for a subset of the space of compact linear operators from a reflexive and separable space X into a Banach space Y to be compact. F. Mayoral (Proc. AMS., 2000) has extended this criterion to the case of Banach spaces not containing a copy of \( l^1 \). The purpose of this note is to give a new proof of the result of F. Mayoral. In our proof, we use \( l^\infty \)-spaces, a well known result of H. P. Rosenthal and L.E. Dor which characterizes the spaces without a copy of \( l^1 \) and a recent result obtained by G. Nagy in 2007 concerining compact sets in normed spaces. We point out that another proof of Mayoral’s result was given by E. Serrano, C. Pineiro and J.M. Delgado (Proc. AMS., 2006) by using a different method.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00