The Use of Selected Methods of Linear Ordering to Assess the Innovation Performance of the European Union Member States Zastosowanie wybranych metod porządkowania liniowego do oceny poziomu innowacyjności krajów członkowskich Unii Europejskiej
The growing interest in measuring economic and social phenomena that are difficult to observe directly increases the need for researchers to broaden the use of multivariate statistical analysis methods. The ease of interpreting results presented in the form of rankings makes it common practice to use different methods of linear ordering of objects. If the appropriate assumptions are met, the determined set of variables allows for the construction of a synthetic measure whose ordered values provide a ranking. Such a statistical approach is quite often used in assessing the level of innovativeness of economies, and the literature abounds in various innovation indices. The starting point of this paper is a set of 27 variables on the basis of which the Summary Innovation Index is developed. After verifying the statistical assumptions and reducing the database to 21 diagnostic factors, the authors construct a total of nine innovation rankings, using different methods of linear ordering and selected procedures for normalisation of variables. The aim of the paper is therefore to assess the impact of selected methods of linear ordering (Hellwig’s method, TOPSIS method, GDM method) and various procedures for normalising variables (classic standardisation, positional standardisation, quotient transformation) on the final ranking of the EU Member States due to the level of their innovation performance. The obtained results confirm that the applied method of linear ordering and the selection of the normalisation procedure have an impact on the final ranking of the examined objects – in this case, the final ranking of the EU Member States due to the level of their innovativeness analysed in the presented research.
Rosnące zainteresowanie pomiarem zjawisk ekonomicznych i społecznych, trudnych do bezpośredniego zaobserwowania, wzmaga potrzebę badaczy do szerszego stosowania metod wielowymiarowej analizy statystycznej. Łatwość interpretacji wyników przedstawianych w formie rankingów sprawia, że powszechnością staje się korzystanie z różnych metod porządkowania liniowego obiektów. Przy spełnieniu odpowiednich założeń, wyodrębniony zbiór zmiennych pozwala na budowę zmiennej syntetycznej, której uporządkowane wartości dają ranking. Takie podejście statystyczne jest dość często stosowane w ocenie poziomu innowacyjności gospodarek, literatura przedmiotu obfituje w różne indeksy innowacyjności. Punktem wyjścia w tym artykule jest zestaw 27 zmiennych, na podstawie których opracowywany jest Summary Innovation Index. Po sprawdzeniu założeń statystycznych i zredukowaniu bazy do 21 czynników diagnostycznych, autorzy konstruują łącznie 9 rankingów innowacyjności, stosując różne metody porządkowania liniowego oraz wybrane procedury normalizacji zmiennych. Celem artykułu jest zatem ocena wpływu na ostateczny ranking krajów członkowskich UE ze względu na poziom ich innowacyjności wybranych metod porządkowania liniowego (metoda Hellwiga, metoda Topsis, metoda GDM) oraz różnych procedur normalizacji zmiennych (standaryzacja klasyczna, standaryzacja pozycyjna, przekształcenie ilorazowe).
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00