Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Predicting the default risk of companies. Comparison of credit scoring models: LOGIT vs Support Vector Machines

Tytuł:
Predicting the default risk of companies. Comparison of credit scoring models: LOGIT vs Support Vector Machines
Przewidywanie ryzyka kredytowego przedsiębiorstw niefinansowych. Porównanie modeli scoringowych: regresja logistyczna vs Support Vector Machine
Autorzy:
Nehrebecka, Natalia
Powiązania:
https://bibliotekanauki.pl/articles/425217.pdf
Data publikacji:
2018
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
Basel III
Internal Rating Based System
credit scoring
Support Vector Machines
logistic regression
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2018, 22, 2; 54-73
1507-3866
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The aim of the article is to compare models on a train and validation sample, which will be created using logistic regression and Support Vector Machine (SVM) and will be used to assess the credit risk of non-financial enterprises. When creating models, the variables will be subjected to the transformation of the Weight of Evidence (WoE), the number of potential predictions will be reduced based on the Information Value (IV) statistics. The quality of the models will be assessed according to the most popular criteria such as GINI statistics, Kolmogorov-Smirnov (K-S) and Area Under Receiver Operating Characteristic (AUROC). Based on the results, it was found that there are significant differences between the logistic regression model of discriminatory character and the SVM for the model sample. In the case of a validation sample, logistic regression has the best prognostic capability. These analyses can be used to reduce the risk of negative effects on the financial sector.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies