Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Przegląd wybranych metod ewolucyjnych w optymalizacji wielokryterialnej

Tytuł:
Przegląd wybranych metod ewolucyjnych w optymalizacji wielokryterialnej
An overview of evolutionary methods of multi-criteria optimization
Autorzy:
Gryniewicz-Jaworska, M.
Powiązania:
https://bibliotekanauki.pl/articles/408631.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
optymalizacja wielokryterialna
optymalizacja ewolucyjna
algorytmy genetyczne
sztuczne systemy immunologiczne
multicriteria optimization
evolutionary optimization
genetic algorithms
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2014, 4; 32-34
2083-0157
2391-6761
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Od połowy lat osiemdziesiątych nastąpił rozwój metod, które bazują na nowym sposobie tworzenia rozwiązań niezdominowanych. Prowadzą one do wyznaczenia frontu ocen Pareto naśladując mechanizmy wytworzone w świecie mikro- i makro- przyrody. Aktualnie do istniejących metod optymalizacji zaliczyć możemy: algorytmy genetyczne, ewolucyjne, algorytmy stosujące sztuczne systemy immunologiczne, algorytmy rojowe oraz mrówkowe. W artykule zaprezentowano kilka wybranych metod optymalizacji ewolucyjnej, w tym algorytm ewolucyjny, mrówkowy, rojowy oraz NSGA. Ponadto opisano sposób działania poszczególnych algorytmów oraz ich przykładowe zastosowanie.

Since the mid-eighties we can see the development of methods that are based on a new method of creating dominated solutions. They lead to designate the ratings Pareto front mimicking the mechanisms created in the world of micro and macro-nature. Currently, the existing optimization methods can include: genetic algorithms, evolutionary algorithms using artificial immune systems, swarm and formic algorithms. The article presents few selected evolutionary optimization methods, including evolutionary algorithm, formic and swarm algorithms, and NSGA. The article also describes how the different algorithms work and their exemplary application.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies