Shrinking gate length in conventional MOSFETs leads to increasing short channel effects like source-to-drain (SD) tunneling. Compact modeling designers are challenged to model these quantum mechanical effects. The complexity lies in the set-up between time efficiency, physical model relation and analytical equations. Multi-scale simulation bridges the gap between compact models, its fast and efficient calculation of the device terminal voltages, and numerical device models which consider the effects of nanoscale devices. These numerical models iterate between Poisson- and Schroedinger equation which significantly slows down the simulation performance. The physicsbased consideration of quantum effects like the SD tunneling makes the non-equilibrium Green’s function (NEGF) to a stateof-the-art method for the simulation of devices in the sub 10 nm region. This work introduces a semi-analytical NEGF model for ultra-short DG MOSFETs. Applying the closed-form potential solution of a classical compact model, the model turns the NEGF from an iterative numerical solution into a straightforward calculation. The applied mathematical approximations speed up the calculation time of the 1D NEGF. The model results for the ballistic channel current in DG-MOSFETs are compared with numerical NanoMOS TCAD [1] simulation data. Shown is the accurate potential calculation as well as the good agreement of the current characteristic for temperatures down to 75 K for channel lengths from 6 nm to 20 nm and channel thickness from 1.5 nm to 3 nm.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00