Cost estimation, as one of the key processes in construction projects, provides the basis for a number of project-related decisions. This paper presents some results of studies on the application of artificial intelligence and machine learning in cost estimation. The research developed three original models based either on ensembles of neural networks or on support vector machines for the cost prediction of the floor structural frames of buildings. According to the criteria of general metrics (RMSE, MAPE), the three models demonstrate similar predictive performance. MAPE values computed for the training and testing of the three developed models range between 5% and 6%. The accuracy of cost predictions given by the three developed models is acceptable for the cost estimates of the floor structural frames of buildings in the early design stage of the construction project. Analysis of error distribution revealed a degree of superiority for the model based on support vector machines.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00