Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Fizyczne podstawy metody interferometrii sejsmicznej

Tytuł:
Fizyczne podstawy metody interferometrii sejsmicznej
Physical derivation of the seismic interferometry method
Autorzy:
Czarny, R.
Powiązania:
https://bibliotekanauki.pl/articles/394167.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
interferometria sejsmiczna
funkcja Greena
korelacja wzajemna
akustyka odwróconego czasu
seismic interferometry
Green’s function
cross-correlation
time-reversed acoustics
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2017, 101; 195-202
2080-0819
Język:
polski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Interferometria sejsmiczna jest dynamicznie rozwijającą się metodą, której pierwsze zastosowania sięgają początków obecnego stulecia. Aktualnie znajduje coraz szersze zastosowanie w zagadnieniach m.in. obrazowania głębokich struktur ziemi oraz utworów przypowierzchniowych, monitorowania procesów wulkanicznych oraz analizowania wpływu silnych trzęsień ziemi na obiekty budowlane. Metoda ta pozwala na odtworzenie odpowiedzi impulsowej tzw. funkcji Greena ośrodka pomiędzy parą odbiorników na podstawie zarejestrowanych w tym samym czasie sejsmicznych pól falowych na tych odbiornikach. W wyniku odpowiednich operacji matematycznych metoda ta zamienia zarejestrowane na odbiornikach koherentne fale sejsmiczne o nieznanym czasie oraz miejscu ich wzbudzenia na układ tzw. wirtualnych źródeł emitujących sejsmiczne pole falowe z dowolnego odbiornika. W artykule przedstawiono fizyczne uzasadnienie wyników eksperymentu akustyki odwróconego czasu (ang. time-reversed acoustics) według Derode i in. (2003), które jest zarazem wytłumaczeniem metody interferometrii sejsmicznej. Eksperyment laboratoryjny w pierwszym etapie polegał na rejestracji akustycznego pola falowego wyemitowanego na brzegu naczynia wypełnionego cieczą i stalowymi prętami. Następnie rejestracje zostały odwrócone w czasie i wysłane powtórnie do wewnątrz naczynia i odebrany po przeciwnej stronie. Zarejestrowany na końcu sygnał okazał się zbliżony do sygnału wyemitowanego, pomimo przejścia przez ośrodek wielokrotnie rozpraszający. Doświadczenie to uzasadniono wykorzystując technikę korelacji wzajemnej (ang. cross-correlation), zasadę superpozycji pola falowego oraz zasadę wzajemności Rayleigha.

Seismic interferometry is a geophysical method which has been developing very rapidly over the last decade. It has been applied to image deep structures of the Earth as well as near-surface, monitor volcanic processes, geothermal reservoirs within exploitation, rock mass deformation induced by mining, landslides, ground water storage, ice sheet or the impact of strong earthquakes to buildings. The vast majority of these applications use ambient seismic noise as a seismic source. This method involves reconstructing thte impulse response, the socalled Green’s function, between pair of receivers based on the wave field registered by them. Using seismic interferometry with various data processing flows the registered coherent seismic waves by the receivers can be changed to virtual sources which are placed in the receiver locations. In the article, the physical derivation of the time-reversed acoustics experiment which was introduced by Derode et. al. (2003) is presented. This derivation also explains the seismic interferometry method. The laboratory experiment contained two phases. First, an acoustics signal was emitted into the medium with hundreds of scatterers (cube with liquid and rods) and registered on the opposite side of the medium. Then, registrations were reversed and emitted back. Finally, the wave field refocused exactly in the point of initial excitation. Derode et. al. explain these results using the cross-correlation technique, superposition and Rayleigh’s reciprocity principles.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies