Elastic waves used in Structural Health Monitoring systems have strongly dispersive character. Therefore it is necessary to determine
the appropriate dispersion curves in order to proper interpretation of a received dynamic response of an analyzed structure. The
shape of dispersion curves as well as number of wave modes depends on mechanical properties of layers and frequency of an excited
signal. In the current work, the relatively new approach is utilized, namely stiffness matrix method. In contrast to transfer matrix method or
global matrix method, this algorithm is considered as numerically unconditionally stable and as effective as transfer matrix approach. However,
it will be demonstrated that in the case of hybrid composites, where mechanical properties of particular layers differ significantly, obtaining
results could be difficult. The theoretical relationships are presented for the composite plate of arbitrary stacking sequence and arbitrary
direction of elastic waves propagation. As a numerical example, the dispersion curves are estimated for the lamina, which is made of
carbon fibers and epoxy resin. It is assumed that elastic waves travel in the parallel, perpendicular and arbitrary direction to the fibers in
lamina. Next, the dispersion curves are determined for the following laminate [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°] and hybrid [Al, 90°, 0°,
90°, 0°, 90°, 0°], where Al is the aluminum alloy PA38 and the rest of layers are made of carbon fibers and epoxy resin.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00