The start point of the dual phase lag equation (DPLE) formulation is the generalized Fourier law in which two positive constants (the relaxation and thermalization times) appear. This type of equation can be used (among others) to describe the heat conduction processes proceeding in micro-scale. Depending on the number of components in the development of the generalized Fourier law into a power series, one can obtain both the first-order DPLE and the second-order one. In this paper the first-order dual phase lag equation is considered. The primary objective of this research is the transformation of DPLE differential form to the integro-differential one supplemented by the appropriate boundary-initial conditions. The obtained form of the differential equation is much simpler and more convenient at the stage of numerical computations – the numerical algorithm based on the three-time-level scheme reduces to the two-time-level one. To find the numerical solution, the Control Volume Method is used (the heating of thin metal film subjected to a laser beam is considered). The choice of the numerical method was not accidental. The method has a simple physical interpretation ensuring the preservation of the local and global energy balances. To our knowledge, it has not been used so far in this type of tasks. In the final part of the paper the examples of numerical simulations are presented and the conclusions are formulated.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00