The music industry has come a long way since its inception. Music producers have also adhered to modern
technology to infuse life into their creations. Systems capable of separating sounds based on sources especially
vocals from songs have always been a necessity which
has gained attention from researchers as well. The challenge of vocal separation elevates even more in the case
of the multi‐instrument environment. It is essential for a
system to be first able to detect that whether a piece of
music contains vocals or not prior to attempting source
separation. It is also very much challenging to perform
source separation from audio which is contaminated with
noise. In this paper, such a system is proposed being tested on a database of more than 99 hours of instrumentals and songs. Experiments were performed with both
noise free as well as noisy audio clips. Using line spectral
frequency‐based features, we have obtained the highest
accuracies of 99.78% and 99.34% (noise free and noisy
scenario respectively) from among six different classifiers, viz. BayesNet, Support Vector Machine, Multi Layer
Perceptron, LibLinear, Simple Logistic and Decision Table.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00