Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Segregation of songs and instrumentals : a precursor to voice/accompaniment separation from songs in noisy scenario

Tytuł:
Segregation of songs and instrumentals : a precursor to voice/accompaniment separation from songs in noisy scenario
Autorzy:
Mukherjee, Himadri
Obaidullah, Sk Md
Santosh, K.C.
Gonçalves, Teresa
Phadikar, Santanu
Roy, Kaushik
Powiązania:
https://bibliotekanauki.pl/articles/384645.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
background track
vocals
noisy audio
line spectral frequency
framing
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 2; 81-90
1897-8649
2080-2145
Język:
angielski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The music industry has come a long way since its inception. Music producers have also adhered to modern technology to infuse life into their creations. Systems capable of separating sounds based on sources especially vocals from songs have always been a necessity which has gained attention from researchers as well. The challenge of vocal separation elevates even more in the case of the multi‐instrument environment. It is essential for a system to be first able to detect that whether a piece of music contains vocals or not prior to attempting source separation. It is also very much challenging to perform source separation from audio which is contaminated with noise. In this paper, such a system is proposed being tested on a database of more than 99 hours of instrumentals and songs. Experiments were performed with both noise free as well as noisy audio clips. Using line spectral frequency‐based features, we have obtained the highest accuracies of 99.78% and 99.34% (noise free and noisy scenario respectively) from among six different classifiers, viz. BayesNet, Support Vector Machine, Multi Layer Perceptron, LibLinear, Simple Logistic and Decision Table.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies