W artykule przedstawiono wyniki symulacyjne adaptacyjnego regulatora prędkości z zastosowaniem sztucznej sieci neuronowej dla napędu z silnikiem synchronicznym o magnesach trwałych. Omówiona została struktura sztucznej sieci neuronowej oraz metoda uczenia regulatora prędkości w czasie rzeczywistym. Model układu został opracowany w języku Matlab. Parametry regulatora są optymalizowane on-line według algorytmu RPROP. Przedstawione wyniki badań symulacyjnych ilustrują poprawne działanie adaptacyjnej regulacji prędkości na zmianę parametrów układu napędowego, takich jak moment bezwładności.
This paper presents the results of simulation of adaptive speed controller using an artificial neural network for permanent magnet synchronous motor drive. Discusses the structure of the artificial neural network and the method of learning the speed controller in real time. Model system has been developed in Matlab. The controller parameters are optimized on-line by RPROP algorithm. The simulation results illustrate the proper operation of the adaptive speed control to change the parameters of the drive system, such as the moment of inertia.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00