Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of the Density of Energetic Materials on the Basis of their Molecular Structures

Tytuł:
Prediction of the Density of Energetic Materials on the Basis of their Molecular Structures
Autorzy:
Rahimi, R.
Keshavarz, M. H.
Akbarzadeh, A. R.
Powiązania:
https://bibliotekanauki.pl/articles/358109.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
crystal density
energetic compound
QSPR
MLR
ANN
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 1; 73-101
1733-7178
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The density of an energetic compound is an essential parameter for the assessment of its performance. A simple method based on quantitative structure-property relationship (QSPR) has been developed to give an accurate prediction of the crystal density of more than 170 polynitroarenes, polynitroheteroarenes, nitroaliphatics, nitrate esters and nitramines as important classes of energetic compounds, by suitable molecular descriptors. The evaluation techniques included cross-validation, validation through an external test set, and Y-randomization for multiple linear regression (MLR) and training state analysis for artificial neural network (ANN), and were used to illustrate the accuracy of the proposed models. The predicted MLR results are close to the experimental data for both the training and the test molecular sets, and for all of the molecular sets, but not as close as the ANN results. The ANN model was also used with 20 hidden neurons that gave good result. The results showed high quality for nonlinear modelling according to the squared regression coefficients for all of the training, validation and the test sets (R2 = 0.999, 0.914 and 0.931, respectively). The calculated results have also been compared with those from several of the best available predictive methods, and were found to give more reliable estimates.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies